skip to content
 

Ströhl F, Kaminski CF, "Frontiers in structured illumination microscopy", Optica (2016), 3(6), 667-677.

DOI: 10.1364/OPTICA.3.000667 | pdf


Abstract

At the start of this millennium, the principles of structured illumination microscopy (SIM) had been established and the concept of resolution doubling demonstrated experimentally in two dimensions. Breathtaking advances have since taken place, making SIM one of the most powerful and versatile superresolution methods available today, routinely used in the study of biochemical processes in laboratories around the world. In theory there is no inherent limit to the resolution obtainable with certain modalities of SIM, and new variants have the potential to operate at even higher speeds and sensitivity than currently realized. In this review, we focus on the very latest innovations in SIM theory and practice, which are set to continue the revolution of this method into the future. Examples include confocal implementations of the SIM principle, which can be used in combination with two-photon excitation and adaptive optics. We present recent applications of such approaches in the life sciences, which illustrate their potential to revolutionize intravital research, by providing the ability to watch life at the molecular scale, at high speeds, and deep within living organisms. A different variant makes use of standing plasmonic waves or localized surface plasmons to confer performance enhancements to 2D SIM modalities. Research on these latter techniques is in its infancy but already shows great potential for their development into powerful in vitro probes for chemical processes at solid/liquid interfaces. Physical concepts are reviewed in detail, and future directions are presented along which the field might fruitfully develop, holding promise for new discoveries on the molecular scale.

 

Subject: