Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows

Weiwei Cai¹,b, Clemens F. Kaminski¹,b,*

¹ School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
² Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK

ARTICLE INFO

Article History:
Received 4 June 2016
Accepted 12 November 2016

Keywords:
Flow diagnostics
Absorption spectroscopy
Classical tomography
Nonlinear tomography
Reactive flows
Engine testing
Frequency-agile spectroscopy

ABSTRACT

Optical imaging techniques are ubiquitous for the resolution of non-uniformities in gas flows. Planar imaging techniques such as laser-induced fluorescence are well established and applied extensively in turbulent reactive flows, offering both high temporal and spatial resolutions. However, planar imaging suffers from a critical disadvantage, the requirement for spatially continuous optical access over large solid angles in both the excitation and detection paths and this precludes their application in many practical situations, for example those encountered in engine testing. Tomographic absorption spectroscopy, TAS, on the other hand, shares many of the advantages of planar imaging techniques but reduces the demands for optical access, because high quality data can be obtained with sparsely sampled volumes. The technique has unrivalled potential for imaging in harsh environments, for example for in-cylinder/in-chamber engine measurements. TAS is beginning to mature as a technique for the simultaneous imaging of temperature and species concentration, and is experiencing a surge of interest due to progress in laser technology, spectroscopy, and theoretical developments of nonlinear tomography techniques. The recent advancements in broad bandwidth, frequency-agile laser sources massively enrich the spectral information obtainable in TAS. Furthermore, nonlinear tomography enables the recovery of multiplexed information from a single tomographic inversion. The utilization of multispectral information improves the immunity of TAS to experimental noise and makes possible the simultaneous imaging of temperature, pressure, and multiple species. Nonlinear tomography can also be used to empower the imaging potential of sensitive and robust absorption techniques, such as wavelength modulation spectroscopy, for use in harsh and even optically dense environments. In combination, this greatly extends the applicability of TAS for more general and harsh scenarios in combustion technology. In this article we review basic concepts and mathematical foundations of classical absorption tomography, proceeding to more advanced recent concepts based on nonlinear tomography, and providing an extensive review of experimental demonstrations and practical applications in the context of state-of-the-art combustion research.

© 2016 Published by Elsevier Ltd.

1. Introduction

Combustion remains the dominant form of energy production in use today, and is an underpinning factor for modern society [1,2]. This dominance is expected to continue for several decades into the future and thus a full understanding and effective control of combustion processes is of paramount importance to improve energy efficiency and to reduce the formation of pollutant species such as particulates, NOx, SOx, and greenhouse gases [3,4]. Key to an understanding of combustion is an ability to measure chemical and physical flow parameters at high temporal and spatial resolution, and to untangle the complex interplay between flow dynamics, chemical kinetics, and heat and mass transfer, which remains a formidable scientific challenge to this day [5]. There are several key parameters such as temperature, species concentration, equivalence ratio, heat release rate, and velocity, the quantification of which is essential to any such effort, and requires their measurement under physically realistic conditions. Numerous non-invasive optical sensing techniques have been developed during the past decades for the diagnosis of reactive flows. For simple laminar flames, such as laboratory McKenna and Bunsen flames, point measurement techniques can be used for the measurement of temperature, such as laser induced grating spectroscopy (LIGS) [6], coherent anti-Stokes Raman scattering (CARS) [7–10], and two-line atomic fluorescence thermometry (TLAF) [11–16]; Laser Doppler velocimetry (LDV) [17,18] for point measurements of local velocity; line-of-sight-averaged techniques such as tunable diode laser absorption spectroscopy (TDLAS) [19,20] for the simultaneous retrieval of temperature, species concentration and pressure; and cavity enhanced techniques (CEAS) [21–26] for...
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>line-of-sight-integrated absorbance</td>
</tr>
<tr>
<td>R [a.u.]</td>
<td>radius of the region of interest</td>
</tr>
<tr>
<td>r [a.u.]</td>
<td>distance to the origin</td>
</tr>
<tr>
<td>$f(r)$</td>
<td>spatial distribution of absorbance along the radial direction</td>
</tr>
<tr>
<td>η</td>
<td>an integration variable</td>
</tr>
<tr>
<td>l</td>
<td>laser beam path</td>
</tr>
<tr>
<td>x, y</td>
<td>x and y coordinates</td>
</tr>
<tr>
<td>Θ [rad]</td>
<td>angle between beam path and x axis</td>
</tr>
<tr>
<td>t [a.u.]</td>
<td>distance from origin to the beam path</td>
</tr>
<tr>
<td>x^*</td>
<td>image pixel values arranged in a vector format</td>
</tr>
<tr>
<td>I</td>
<td>total number of beams</td>
</tr>
<tr>
<td>J</td>
<td>total number of pixels</td>
</tr>
<tr>
<td>$A_{i,j}$</td>
<td>weight matrix</td>
</tr>
<tr>
<td>\bar{a}_i</td>
<td>the ith row of A</td>
</tr>
<tr>
<td>β</td>
<td>a linear operator</td>
</tr>
<tr>
<td>Φ_k</td>
<td>eigenfunctions</td>
</tr>
<tr>
<td>λ</td>
<td>regularization operator realized in a matrix format</td>
</tr>
<tr>
<td>g</td>
<td>regularization factor</td>
</tr>
<tr>
<td>R</td>
<td>resolution matrix</td>
</tr>
<tr>
<td>I</td>
<td>identity matrix</td>
</tr>
<tr>
<td>Ψ</td>
<td>a vector of complex numbers</td>
</tr>
<tr>
<td>R_j</td>
<td>ratio of integrated absorbance at two transitions of the jth pixel</td>
</tr>
<tr>
<td>μ</td>
<td>spatial distributions of the flow parameters</td>
</tr>
<tr>
<td>Γ</td>
<td>a function describing a physical process</td>
</tr>
<tr>
<td>Δ</td>
<td>grid spacing</td>
</tr>
<tr>
<td>T [K]</td>
<td>temperature</td>
</tr>
<tr>
<td>X</td>
<td>absorber concentration</td>
</tr>
<tr>
<td>P [atm]</td>
<td>pressure</td>
</tr>
<tr>
<td>LIGS</td>
<td>laser-induced grating spectroscopy</td>
</tr>
<tr>
<td>TLAF</td>
<td>two-line atomic fluorescence thermometry</td>
</tr>
<tr>
<td>TDLAS</td>
<td>tunable diode laser absorption spectroscopy</td>
</tr>
<tr>
<td>PLIF</td>
<td>planar laser-induced fluorescence</td>
</tr>
<tr>
<td>LIPS</td>
<td>laser-induced phosphorescence spectroscopy</td>
</tr>
<tr>
<td>LOS</td>
<td>line-of-sight</td>
</tr>
<tr>
<td>ABNT</td>
<td>absorption-based nonlinear tomography</td>
</tr>
<tr>
<td>CFWMS</td>
<td>calibration-free wavelength modulation spectroscopy</td>
</tr>
<tr>
<td>TPA</td>
<td>three-point Abel</td>
</tr>
<tr>
<td>ART</td>
<td>algebraic reconstruction technique</td>
</tr>
<tr>
<td>SR</td>
<td>spatial resolution</td>
</tr>
<tr>
<td>LSF</td>
<td>line spread function</td>
</tr>
<tr>
<td>ESF</td>
<td>edge spread function</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>MART</td>
<td>multiplicative algebraic reconstruction technique</td>
</tr>
<tr>
<td>TRKB</td>
<td>tomographic reconstruction via Karhunen-Loeve basis</td>
</tr>
<tr>
<td>TSLs</td>
<td>tunable semiconductor lasers</td>
</tr>
<tr>
<td>QCLs</td>
<td>quantum cascade lasers</td>
</tr>
<tr>
<td>DBR</td>
<td>distributed Bragg reflector</td>
</tr>
<tr>
<td>CA</td>
<td>crank angle</td>
</tr>
<tr>
<td>α</td>
<td>absorption coefficient</td>
</tr>
<tr>
<td>ρ_c</td>
<td>computed projection</td>
</tr>
<tr>
<td>ρ_m</td>
<td>measured projection</td>
</tr>
<tr>
<td>\mathcal{R}_T</td>
<td>regularization term for T distribution</td>
</tr>
<tr>
<td>\mathcal{R}_X</td>
<td>regularization term for X distribution</td>
</tr>
<tr>
<td>γ_T</td>
<td>regularization factor for \mathcal{R}_T</td>
</tr>
<tr>
<td>γ_X</td>
<td>regularization factor for \mathcal{R}_X</td>
</tr>
<tr>
<td>α [cm$^{-1}$]</td>
<td>modulation depth</td>
</tr>
<tr>
<td>ν [cm$^{-1}$]</td>
<td>laser frequency</td>
</tr>
<tr>
<td>I [a.u.]</td>
<td>laser intensity</td>
</tr>
<tr>
<td>I_0 [a.u.]</td>
<td>linear modulation amplitude</td>
</tr>
<tr>
<td>I_2 [a.u.]</td>
<td>nonlinear modulation amplitude</td>
</tr>
<tr>
<td>σ_n</td>
<td>std of measurement noise</td>
</tr>
<tr>
<td>f_m [kHz]</td>
<td>modulation frequency</td>
</tr>
<tr>
<td>ψ [rad]</td>
<td>linear phase shift with respect to frequency modulation</td>
</tr>
<tr>
<td>ψ_2 [rad]</td>
<td>nonlinear phase shift with respect to frequency modulation</td>
</tr>
<tr>
<td>S [cm$^{-2}$/atm]</td>
<td>line strength</td>
</tr>
<tr>
<td>H_k</td>
<td>kth order harmonic coefficients</td>
</tr>
<tr>
<td>T</td>
<td>transmittance</td>
</tr>
<tr>
<td>S_{1f} [a.u.], S_{2f} [a.u.]</td>
<td>1st and 2nd orders of harmonic signals</td>
</tr>
<tr>
<td>G</td>
<td>scaling factor accounting for electrical and optical gains</td>
</tr>
<tr>
<td>I_0 [a.u.]</td>
<td>average laser intensity at the line-center</td>
</tr>
<tr>
<td>F</td>
<td>cost function</td>
</tr>
<tr>
<td>T_{SA}</td>
<td>temperature parameter in the simulated annealing algorithm</td>
</tr>
<tr>
<td>ζ</td>
<td>annealing rate</td>
</tr>
<tr>
<td>ξ, ξ</td>
<td>normalized temperature and concentration errors</td>
</tr>
<tr>
<td>τ_{true} [K], τ_{rec} [K]</td>
<td>ground truth and reconstructed temperature</td>
</tr>
<tr>
<td>X_1, X_2</td>
<td>concentration for a two-zone problem</td>
</tr>
<tr>
<td>T_1 [K], T_2 [K]</td>
<td>temperature for a two-zone problem</td>
</tr>
<tr>
<td>CARS</td>
<td>coherent anti-Stokes Raman scattering</td>
</tr>
<tr>
<td>LDV</td>
<td>laser Doppler velocimetry</td>
</tr>
<tr>
<td>CEAS</td>
<td>cavity enhanced absorption spectroscopy</td>
</tr>
<tr>
<td>PIV</td>
<td>particle imaging velocimetry</td>
</tr>
<tr>
<td>FRS</td>
<td>filtered Raman scattering</td>
</tr>
<tr>
<td>TAS</td>
<td>tomographic absorption spectroscopy</td>
</tr>
<tr>
<td>CAT</td>
<td>classical absorption tomography</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>FBP</td>
<td>filtered back-projection</td>
</tr>
<tr>
<td>MLEM</td>
<td>maximum likelihood expectation maximization</td>
</tr>
<tr>
<td>AART</td>
<td>additive algebraic reconstruction technique</td>
</tr>
<tr>
<td>SIRT</td>
<td>simultaneous iterative reconstruction technique</td>
</tr>
<tr>
<td>MTF</td>
<td>modulation transfer function</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>DFT</td>
<td>discrete Fourier transform</td>
</tr>
<tr>
<td>FDML</td>
<td>Fourier domain mode-locking</td>
</tr>
<tr>
<td>TDLs</td>
<td>tunable diode lasers</td>
</tr>
<tr>
<td>DFB</td>
<td>distributed feedback</td>
</tr>
<tr>
<td>TDC</td>
<td>top dead center</td>
</tr>
<tr>
<td>DAS</td>
<td>direct absorption spectroscopy</td>
</tr>
<tr>
<td>POD</td>
<td>proper orthogonal decomposition</td>
</tr>
<tr>
<td>SA</td>
<td>simulated annealing</td>
</tr>
</tbody>
</table>
the detection of minor flame species with the highest sensitivity. Spatial variations of these scalar quantities can be measured by consecutive measurements in steady laminar flames. However, for more complicated combustion phenomena such as turbulent model flames, ignition, flashback, and supersonic/hypersonic reactive flows, which evolve rapidly and feature scalar gradients, the aforementioned techniques are inadequate and imaging techniques with high temporal resolution are required.

Generally, one can classify imaging techniques into two categories, namely planar and tomographic imaging.

In the former, a specific plane within the flow field is illuminated with light from a pulsed laser source, and the ensuing signal e.g. from Mie [27], Rayleigh [28], and Raman scattering, phosphorescence [29], or fluorescence [30] can then be captured via 2D array detectors, often intensified CCD cameras. In most implementations, the signals thus received scale linearly with excitation intensity. Examples of planar imaging techniques include planar laser-induced fluorescence (PLIF) [31–34], particle imaging velocimetry (PIV) [35], and laser-induced-phosphorescence spectroscopy (LIPS) [29,36–38]; and filtered Rayleigh scattering (FRS) [28], etc. Volumetric information can be recovered through the sequential scanning of multiple parallel planes [39,40]. The characteristic physical quantities describing the flows such as the profiles of temperature [41–44], velocity [45–49], and mixture fraction [50–52] can then be inferred from the obtained images. For example, two-line atomic fluorescence (TLAF) [53–55] measures the fluorescence signals of two transitions from the ratio of which temperature can be extracted; and similarly simultaneous imaging of CH2O and OH yield heat release rate in premixed flames [56–59]. For ultimate spatial resolution, planar imaging techniques are indispensable, offering snapshots of flame chemistry over spatial scales down to tens of micrometers with ns temporal resolution and kHz repetition rate [34,60]. Such capability is essential for the resolution of the characteristic length scale of flow turbulence and its interplay with chemical kinetics [67–76]. However, the requirement for optical access often makes them inapplicable in practical flame environments, for example the combustion chamber of an automotive engine or a ramjet/scramjet. Optical engines have been designed and fabricated to mitigate this drawback; nevertheless, the mechanical properties of the original engines cannot be fully replicated. In addition, due to their high costs, optical analogs are impractical to implement for many engine models. Thus, planar imaging techniques are ideal for the measurements of model flames for computational model validations, but less suited in the practical design of better practical combustion technologies.

Tomography is the other imaging category, and here some of the latter disadvantages are less prominent. In tomography one reconstructs scalar fields from multiple projections, which represent signals integrals along various directions [77]. For applications in which optical access is ample and where volumetric illumination is possible, tomographic reconstructions of 3D fields can be realized without spatial sweeping of the illumination fields and thus without associated loss of time. Examples of volumetric tomography techniques in combustion flows include tomographic PIV for volumetric velocimetry [78,79], tomographic X-ray imaging for fuel mass distributions [80,81], tomographic emission spectroscopy of either radicals or soot distribution [82–84], tomographic deflectometry [85–89], and tomographic interferometry [90–97] for imaging of refractive index, which can then be used to infer temperature distributions. There is great potential also to implement other techniques of value to the combustion community into tomographic variants. For example, tomographic laser-induced phosphorescence could be conceived by combining the work presented in [36] and tomography, hence one could envisage the simultaneous measurement of volumetric temperature and velocity distributions. On the other hand, for applications with limited optical access, planar tomographic variants can be implemented. With both the illumination and detection arranged in the same plane, the requirement for optical access can be greatly reduced. In difference to planar imaging, in which the target field is radiation intensity, the object field of tomography can be other physical quantities, such as absorption/extinction coefficients and refractive indices of flows. For example, absorption spectroscopy can be combined with tomography to image the fields of absorption coefficients of the absorbing species at two or more transitions; the fields can then be processed to simultaneously recover temperature and species concentration fields [98]. A brief review of tomographic techniques for flame diagnostics has been presented in Ref. [99]. Also, tomographic PIV has been the subject of several review articles [100–102] and book chapters [103,104]. Table 1 summarizes the various tomographic techniques discussed so far and their applications in combustion research. The table also lists the range of years over which the cited papers have been published, to give an indication of research trends that have emerged over time.

Among all tomographic methods, tomographic absorption spectroscopy (TAS) is the most promising for engine diagnostics, since it does not require spatially continuous optical access, and mechanical modifications (e.g. the drilling of holes) are minimal to adapt engines for TAS. TAS also offers high species specificity and can be sensitive. These features make TAS a powerful and attractive complement to planar imaging techniques for technical combustion research. The aim with this review is to provide a comprehensive summary of both classical absorption tomography (CAT) and also the newly emerging absorption based nonlinear tomography (ABNT) methods for the study of gas dynamics and reactive flows. As indicated by its name, CAT is an implementation of classical tomography [105], where one records projections for one or two optical transitions along various directions, resulting in the recording of so called sinograms. Sinograms can be recorded from multiple line-of-sight measurements across a lateral plane through the sample volume, recorded, for example on a line detector (2D tomography). Using an array detector one can record several such planes at once (3D tomography), as demonstrated in [82,106,107] for chemiluminescence. In either case,

Table 1

Summary of optical tomographic techniques for flow diagnostics.

<table>
<thead>
<tr>
<th>Name</th>
<th>Measurand</th>
<th>Projection</th>
<th>Applications</th>
<th>References</th>
<th>Year range</th>
</tr>
</thead>
</table>
sinograms are obtained which are post-processed to obtain the distributions of fundamental parameters such as temperature and species concentration [108,109]. Since in a CAT process the target field is linearly related to the LOS measurements, i.e. the latter are the line integrals of the former, it is also referred to as absorption-based linear tomography. Theoretically, to make the equation system well-posed, a large number of projections are required to obtain a sufficient number of equations. However, for practical engine measurements only a few projections are usually available due to limited optical access and hence the obtainable linear equation system often becomes rank-deficient [110,111]. To alleviate this problem, many algorithms that were originally developed for X-ray tomography techniques, where similar problems exist, have been adapted to CAT for combustion diagnostics [112,113]. For practical implementations, irregular beam arrangements (‘regular’ means the projections are arranged in an equiangular manner and the rays in each projection are equidistant) were also adopted. Such methods maximize the spatial sampling efficiency, but come at the cost of increased experimental complexity [114].

A further problem in classical tomography is that it necessarily is only applicable for measurands that are integratable (cumulative) along the LOS. This greatly limits its compatibility with more advanced variants of absorption techniques. For example, the calibration-free wavelength modulation spectroscopy (CFWMS) technique [115] cannot be combined with classical tomography in scenarios where the optical depth is thick [116], since in this case the harmonic signals cannot be linearized and the line of sight measurements do not represent the integrals of any physical quantity.

These and related shortcomings can be addressed and overcome by the recently proposed concept of nonlinear tomography [117,118]. Absorption based nonlinear tomography, ABNT, takes advantage of rich spectral information that becomes accessible through use of novel broadband, wavelength-sweeping laser sources [117,118]. The extra information afforded by ABNT can enhance the immunity of the technique against noise and successful reconstructions with ABNT were recently demonstrated from only two orthogonal projections, when multiple absorption transitions were probed simultaneously. This would be difficult to achieve with CAT and opens the potential for ABNT to be used for engine measurements where optical access is restricted [119]. The simultaneous processing of information from a multitude of spectral transitions furthermore enhances the immunity of the technique against experimentally generated noise [120,121]. In addition, ABNT enables use of advanced, noise immune absorption techniques, such as CFWMS, which offers enhancements in signal-to-noise ratios, SNR, of 10–100 times over standard absorption techniques and is exempt from a requirement to fit baselines, offering immunity to laser intensity fluctuations. All these features are highly desirable for the harsh conditions prevailing in technical combustion systems [122]. Data from ABNT measurements are fed into a set of nonlinear equations from which temperature, species concentration, and pressure distributions can be recovered simultaneously [117]. In situations where optical access is ample, ABNT achieves a similar spatial resolution as CAT for the same number of projections, but offers improved immunity to noise [108]. However, ABNT is vastly superior to CAT in situations with restricted optical access. In summary, the advantages of ABNT are two-fold: first, it can accommodate more dimensions in the tomographic reconstruction (e.g. multiple spectral channels) and it works more robustly than CAT in data-limited situations, for example where the geometry of the combustor is restricted and, e.g., only two orthogonal projections can be retrieved; second, it allows a combination of tomographic reconstruction methods with absorption techniques such as CFWMS that are more advanced than possible with CAT. These advantages open the field of tomographic absorption imaging to extremely harsh environments such as coal-fired power plant boilers filled with flying ashes or those encountered during in-flight engine monitoring in the presence of vibrations, etc.

The purpose of this review is to give the reader a comprehensive introduction into the physical concepts behind absorption based tomographic imaging, exploring both theoretical and experimental concepts. State of the art applications in reactive flow imaging are reviewed and an outlook is given on potential developments in the field. The remainder of the paper is organized as follows: chapter 2 focuses on CAT and begins with foundations of tomographic imaging and an explanation of common inversion algorithms, before presenting experimental considerations and applications of CAT; similarly, chapter 3 includes the mathematical formulation, numerical studies, experimental demonstrations and applications of ABNT. The review concludes in Chapter 4 with a summary and an outlook on how the field might develop into the future.

2. Classical absorption tomography

Classical tomography originated from medical applications and was later extended to other industrial fields such as process engineering [152,153]. As indicated by the name, CAT is a combination of absorption spectroscopy with classical tomography, and reconstructs the distribution of absorption coefficients from integrated line-of-sight (LOS) measurements along various orientations i.e. projections. CAT was initially demonstrated in axi-symmetric flames [129,154] and later applied to more complicated flow scenarios to reconstruct spatial variations across a measurement plane, e.g. the combustion process in an automotive engine [114,155,156]. In this chapter, we summarise the mathematical formulation, inversion algorithms, experimental implementations, and applications of CAT.

2.1. Algorithms for 1D classical absorption tomography

In some applications the scalar field to be investigated can be mathematically represented in terms of only one independent spatial variable, for example for a field that is rotationally symmetric. In this case, the projections along arbitrary orientations are equivalent. Thus a measurement of one single projection is sufficient to enable tomographic reconstruction of the field and this is called 1D tomography. The concept is illustrated in Fig. 1(a). For a target field that varies only along the radial direction, its spatial distribution can be described by a function \(f(r) \) and the corresponding LOS measurements along the vertical line at \(x \) can be expressed as [157,158]:

\[
p(x) = 2 \int_{x}^{R} \frac{f(r)dr}{\sqrt{r^2-x^2}}
\]

(2.1)

The LOS signal \(p(x) \) can be calculated from an absorption measurement using the Beer-Lambert law to be \(p(x) = -\ln[l_i(x)/l_f(x)] \), where \(l_i(x) \) and \(l_f(x) \) denote the measured transmitted and incident light intensities at the wavelength \(\lambda \), respectively. There are a number of algorithms available to retrieve the field distribution \(f(r) \) from Eq. (2.1), including two-point/three-point Abel transformation, the so called onion peeling algorithm [157–165], and finally the filtered back-projection algorithm [166], which will be introduced in detail in Section 2.2.1, because of its importance for non-axisymmetric tomography applications. These algorithms have been thoroughly reviewed and compared in Ref. [166] and for 1D applications the three-point Abel (TPA) transform wins, as it is the easiest to implement, the fastest to compute, and the least sensitive to noise of all three methods. The derivation of TPA is briefly summarized below for the reader’s convenience.

The analytical inversion of Eq. (2.1) is known as the Abel transform [157]

\[
f(r) = -\frac{1}{\pi} \int_{r}^{R} \frac{p'(x)dx}{\sqrt{x^2-r^2}}
\]

(2.2a)

where \(p'(x) \) denotes the gradient of the LOS signals along the x axis. As can be seen, \(f(r) \) is encoded in the variations of the projection data
i.e. $p'(x)$. As illustrated by Fig. 1(b), the Abel transform equals to the sum of segments which can be calculated according to

$$f(r_i) = -\frac{1}{\pi} \sum_{j=1}^{N-1} \int_{0}^{\Delta r/2} \int_{j-1}^{j} \frac{p'(r_i + \eta)d\eta}{\sqrt{(r_i + \eta)^2 - r_i^2}}$$

where η is the integration variable. For TPA $p'(x_i)$ can be approximated using discrete values in a quadratic form as

$$p'(x_i) = \frac{|p(r_{i+1}) - p(r_{i-1})|/(2\Delta r) + p(r_{i+1}) + p(r_{i-1}) - 2p(r_i)|\eta/\Delta r^2}$$

By combining Eqs. (2.2b) and (2.3), $f(r)$ can be analytically calculated for every r_i. A detailed review for the computational implementation of the TPA can be found in Ref. [166] and examples for its use to investigate axisymmetric flames are reviewed in Ref. [157].

2.2. Algorithms for 2D classical absorption tomography

In most applications, the field can only be adequately described with two independent variables. In this case, many projections are required for the reconstructions along various directions. The
recovery of the field as a function of two spatial variables is defined as 2D tomography. There are typically two categories of algorithms to perform 2D inversions, they are either analytical (or transform-based) or algebraic-iterative methods, respectively. The filtered back-projection (FBP) algorithm is an example of an analytical algorithm and has been widely applied in industrial X-ray tomography [167]. On the other hand, the algebraic-iterative methods formulate the inversion problem in a discrete manner and arrive at the solution through iterative computation. Examples include the algebraic reconstruction technique (ART) [168], the Landweber algorithm [114,169], the maximum likelihood expectation maximization (MLEM) algorithm, and variants thereof. Other algorithms such as the finite domain direct inversion method [170], adaptive finite domain direct inversion [171], level set method [172], and the low third derivative method [40,173] also exist, but are less widely used in practice. The basic working principles of the most important algorithms will be introduced in the following sub-sections.

2.2.1. Filtered back-projection algorithm

The filtered back-projection, FBP, algorithm is based on the analytical solution of the Radon transform [174–176], defined as

$$p(\theta,t) = \int f(x,y) dl$$

(2.4)

where $p(\theta,t)$ is the line-of-sight measurement at an inclination angle of θ with respect to the x-axis and located at a distance t from the origin as shown in Fig. 2; and l specifies an integration path. Obviously, p is a 2 dimensional function and it is of key importance in tomography. It is essentially the assembly of all projections into a 2D format. The process of recovering the original function f from p is the essence of classical/linear tomography. The foundation of the FBP algorithm lies in the so-called central slice theorem, which states that the Fourier transform of a projection at a specific angle is equivalent to one slice of the 2D Fourier transform of the field at that same angle, as illustrated in Fig. 2. Based on this theorem, the algorithm can be implemented in two steps: 1) take the Fourier transform of each projection sequentially and organize the results into a 2D map. The map then contains information of the original object in Fourier space; and 2) take the inverse Fourier transform of the map obtained to recover the object. However, due to the finite sampling size of the LOS measurements, the low frequency image information is amplified in the Fourier space. As a result, performing a direct inverse Fourier transformation usually results in image blur, even when the measured projections are free of noise. To de-blur the reconstruction, an additional step is included, namely the filtering of the original projection data. The entire operation is captured by the following equation:

$$f(x,y) = \int \int p(\theta,t)e^{-j2\pi wt} dt \left|w\right| e^{j2\pi wt} dw d\theta$$

(2.5)

where $|w|$ is a ramp filter used to remove blurring.

The FBP algorithm works well if a large number of projections are obtainable from the measurement object. One of its disadvantages is
that the projections need to be arranged at regularly spaced angles to permit the Fourier transformations [177]. Thus, FBP is recommended for applications where optical access is ample and many projections can be arranged freely along arbitrary orientations. Some example applications, ranging from simple flat flames to exhaust flows from scramjet combustors, where the FBP algorithm came to use, are found in Refs. [178–188].

2.2.2. Algebraic reconstruction technique

The CAT problem can also be formulated in a discrete format as illustrated in Fig. 3. For this purpose, the region of interest (ROI), to be probed in the measurement object is discretized into square pixels which are probed by numerous laser beams. One representative beam, with index i, is highlighted in green and the absorbance measured for it denoted as a_i. The absorption coefficient for the jth pixel in the sample is labeled as λ_j and correspondingly the absorption length of the ith beam within the jth pixel as \bar{a}_i. The absorption lengths of all beams within every pixel can be compiled into an $I \times J$ matrix. The forward projection process can then be described by the following equation

$$\tilde{p} = A\tilde{x}$$

where \tilde{p} and \tilde{x} represent the sinogram and the original map of the absorption coefficients, respectively, both organized in a vector format. Since the tomographic problem is here modeled with a linear equation system, classical tomography is also referred to as linear tomography. Intuitively, the system can be solved by either calculating the inverse of the matrix A or using Gaussian elimination. However, in practice, the available number of projections is always limited, which can lead to an underdetermined equation system, and because of noise, which is always present, the matrix A is typically ill-conditioned.

The ART algorithm is iterative and features several critical advantages that can overcome the ill-posedness of the tomographic problem typically encountered in combustion applications [68]. These advantages include 1) robustness in the presence of noise; 2) ability to reconstruct a field from a limited number of views; 3) ability to incorporate a priori information (e.g., smoothness or boundedness) into the formulation to improve reconstruction fidelity; and 4) the flexibility with the geometry of the projections which need not necessarily be arranged in an equiangular manner [112,123,124,189–200].

The ART algorithm is recommended for usage when the number of the LOS measurements is moderately small (ca. 100–1000). It is discrete in nature [60,77] and has numerous variants such as the additive ART (AART) [201] and multiplicative ART (MART) [39] algorithms, and the simultaneous iterative reconstruction technique (SIRT) [9,10,69], each with their own advantages in certain application domains. Among these, AART is the most widely used variant and is introduced in detail in the following paragraphs.

Fig. 4 illustrates the working principle of the AART algorithm on a simple 2×2 tomographic problem, sampled with two orthogonal projections. The upper left panel defines the tomographic problem. The numbers in this panel indicate the measured projections. The objective is to find the values for each pixel that give rise to the measured projections. As a first step (middle panel on the top) the algorithm begins with a guessed solution, e.g. here assigning each pixel the value 0; in Step 2 the differences e between the guessed and measured projections are calculated for every LOS; in Step 3 e is divided up evenly and distributed among (in practice: added to) all pixels along the LOS and their values are updated; and the same procedure is repeated for the second projection as shown in Steps 4 and 5. These steps constitute one iteration in the algorithm. The iteration stops when a termination criterion is met. For example, the algorithm can be terminated when the relative difference between the measured and predicted projections is smaller than an acceptable error. We want to point out that for the convenience of illustration, a 2×2 tomographic problem, which is fully determined, was used here as an example. In practice, TAS measurements will normally lead to an underdetermined problem in combustion diagnostics. A rigorous mathematical expression of the algorithm is encapsulated in the following equation [202]:

$$\tilde{x}_{k+1} = x_k + \beta \cdot \frac{1}{a_k} \left(p_i - \frac{a_i \cdot x_k}{a_i \cdot a_i} \right)$$

where \tilde{x}_k is the estimated solution at the kth iteration; β a relaxation factor that controls the rate of convergence; $< \cdot >$ denotes the inner product operation; p_i the measured absorbance of the ith beam; and a_i the ith row of the weighting matrix $A_{i,j}$. It is obvious that the computational cost is directly proportional to the number of projections and computational iterations.

The ART algorithm has been widely adopted in cases where a moderately small number (ca. 100–1000) of LOS measurements is available. A few example applications can be found in [98,196,198,203,204]. The major drawback of this algorithm lies in the fact that it is only semi-convergent [205,206], i.e. ART approaches the true solution at an early stage but diverges away as the iteration steps increase. A detailed description of this problem and ways of mitigation are found in [207].

2.2.3. Landweber algorithm

Having become the most commonly used method in electrical tomography [208], the Landweber algorithm is another iterative method that has been widely adopted in CAT problems [67,114,155,156,169,209,210]. The values of x in Eq. (2.7) can be initialized using the equation $\tilde{x}_i = A^T \tilde{p}$, which essentially performs the
linear back-projection operation. Here A^T is used to approximate the inverse of A. The subsequent steps of the algorithm can be described by

$$\tilde{x}_{k+1} = \Theta \tilde{x}_k + \beta A^T \left(\tilde{p} - A \tilde{x}_k \right),$$

where the subscript k indicates the index of the current iteration; β is again a relaxation factor to control the rate of convergence; and Θ is an operator that enforces additional constraint terms, such as the non-negativity of the pixel values. Median filters as well as wavelet filters can also be incorporated in each iteration step in Θ to smooth the reconstruction and remove artifacts, which usually appear as high-frequency components in the reconstruction [177]. As seen from the equation, the errors in the estimated projections $\tilde{p} - A \tilde{x}_k$ are back-projected through simple matrix multiplications. The Landweber algorithm has been effectively used in applications, where only a very limited number of LOS measurements are available (20–100) and is the most suitable for harsh environments, e.g. during in-cylinder/in-chamber measurements [155]. Similar to the ART algorithm, the Landweber algorithm also suffers from semi-convergence, which, in this approach, can be alleviated e.g. by defining an appropriate termination criterion [211].

2.2.4. Maximum likelihood expectation maximization

The maximum likelihood expectation maximization (MLEM) is another iterative algorithm and has been widely used for tomographic PIV [212–217]. Similar to the ART and the Landweber algorithms, the measured projections are used to update and correct initially guessed values of the pixels. The pixel values are updated one by one during each iteration. The correction for the jth pixel can be written as

$$x_{k+1}^j = x_k^j + \frac{p_j}{\sum_{i} a_{ij}} - A_{ij} \beta,$$

(2.9)

All the beams passing through the specific pixel are used simultaneously to update the value with the absorption lengths used as weighting factors. Compared with the FBP algorithm, the MLEM algorithm does not require equally spaced projection data and can produce fewer artefacts [218]. But the major issue with MLEM is its slow convergence and high computational cost. In [219] the ART and MLEM algorithms were compared for medical imaging applications and shown to exhibit similar reconstruction performance, however the former was estimated to be up to an order of magnitude less costly computationally than the latter for a given task. Thus, the MLEM algorithm seems to be appropriate only in cases which are well-posed and where large numbers (>1000) of LOS measurements are available, and computational efficiency is not an issue. Examples of MLEM in TAS are presented in [128,212].

2.2.5. Tomographic reconstruction via Karhunen-Loève basis

For many combustion applications only a limited number of LOS measurements are available and thus the inversion problem becomes underdetermined. The tomographic reconstruction via Karhunen-Loève basis (TRKB) algorithm [220–222] is a method that takes advantage of available a priori information and thus greatly reduces the dimensionality of the inversion problem. The a priori information used in the method is contained in what is called a training set, for example distributions of the target field obtained from computational fluid dynamics simulations or from alternative experimental methods. By performing a so called proper orthogonal decomposition, the eigenfunctions can be extracted and used to approximate the reconstruction as described by

$$\tilde{x} = \sum_{i=1}^{N_\epsilon} \xi_i \Phi_i,$$

(2.10)

where Φ_i and ξ_i are the eigenvectors and corresponding eigenvalues (i.e. the relative weights), respectively; N_ϵ denotes the total number of eigenfunctions used in the approximation. The eigenfunctions obtained through POD are optimal since the minimal number of terms is required to reproduce the original training distribution for a given desired accuracy. The first eigenfunction is simply the mean of the training set and the second represents the most prominent fluctuation from this mean. By utilizing both the a priori (the training set) and posterior (the measured projections) information, the eigenvalues can be obtained by optimizing the following least-square problem

$$\| p_{\text{meas}} - p_{\text{m}} \|^2,$$

(2.11)

where $\| \cdot \|_2$ denotes 2-norm, p_{m} is the measured projections, and p_{gen} is a matrix with each column containing projections that are calculated treating each eigenfunction as the real distribution. The reconstruction can then be obtained using Eq. (2.10). Typically, only a few eigenfunctions (ca. 10–30), are needed for the tomographic reconstruction; compared with the previous inversion formulation, the number of variables is greatly reduced, making this method especially suitable for scenarios where only a small number of LOS measurements are available.

To summarize, the transform-based and iterative algorithms are the most widely adopted methods for TAS to date. Although they have been used in a number of specific applications, there has been little discussion so far on how and why a specific algorithm was chosen instead of another. In Table 2 we summarize the major algorithms adopted in the context of TAS and point to relevant literature and indicate relative merits and limitations.

2.3. Regularization

The CAT measurements typically result in an ill-conditioned linear equation system. For example, for an overdetermined case in which the ROI is densely sampled and the number of beams is greater than the number of grids, the ill-conditioning is dictated by

| Table 2 Summary and comparison between algorithms used for TAS. |

<table>
<thead>
<tr>
<th>Algorithm:</th>
<th>FBP</th>
<th>ART</th>
<th>Landweber</th>
<th>MLEM</th>
<th>TRKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merits:</td>
<td>Non-iterative and efficient</td>
<td>Most efficient among iterative algorithms; handles irregular beam arrangement</td>
<td>Handles irregular beam arrangement</td>
<td>handles irregular beam arrangement; fewer artifacts than FBP</td>
<td>Requires minimum number of LOS measurements</td>
</tr>
<tr>
<td>Limitations:</td>
<td>Large numbers of projections are required in equi-angular arrangement</td>
<td>Semi-convergence</td>
<td>Semi-convergence</td>
<td>Slow convergence</td>
<td>Needs extensive prior information</td>
</tr>
<tr>
<td>Example references</td>
<td>[174,179]</td>
<td>[98,196,198]</td>
<td>[114,155,209,210]</td>
<td>[128,178,212]</td>
<td>[220–222]</td>
</tr>
</tbody>
</table>
the noise from the LOS measurements. This leads to instability during the deconvolution process and small perturbations to the measurement data incur huge errors in the solution. This case is called a discrete ill-posed problem. On the other hand, when the equation system is underdetermined, i.e. the number of beams is smaller than the number of grid points, the ill-conditioning is dominated by the non-unique nature of the solution. This is referred to as a rank-deficient problem. Because the mathematical manifestations of ill-posedness vary, the appropriate strategy must be adopted to alleviate ill-conditioning in a given case. We describe these in the following sections.

2.3.1. Regularization for discrete ill-posed problem

For discrete ill-posed problems, two regularization methods are commonly used: The truncated singular value decomposition method and standard Tikhonov regularization. Both are subjects of this section.

In general, the equations for an overdetermined linear problem can be solved using a least square minimization approach:

$$\hat{x}_{LS} = \arg \min \| Ax - p \|^2$$ \hspace{1cm} (2.12)

where A is ill-conditioned, the present noise in p will be amplified into a large error in the solution x_{LS}. A singular value decomposition (SVD) can be applied to A to analyze how noise is amplified during the inversion process as follows

$$A = U S V^T$$ \hspace{1cm} (2.13)

where U and V are orthonormal matrices and S contains singular values along its diagonal in a descending order.

The least square solution can now be expressed as

$$\hat{x}_{LS} = \sum_{j=1}^{J} v_j \sigma_j^{-1} D_j^T p$$ \hspace{1cm} (2.14)

where the u_j and v_j are the jth column vectors of U and V respectively and p is the jth singular value. When p is contaminated with noise then the above equation can be reformulated as

$$\hat{x}_{LS} = x^{exact} + x^{error} = \sum_{j=1}^{J} v_j \sigma_j^{-1} D_j^T \sigma_j^* p + \sum_{j=1}^{J} v_j \sigma_j^{-1} \Delta D_j^T \sigma_j^* p$$ \hspace{1cm} (2.15)

where x^{exact} and x^{error} are the exact solution and the reconstruction error respectively, and $\Delta D_j^T \sigma_j^* p$ represents the measurement noise. As can be seen from the right-most term, the reconstruction error is inversely proportional to singular values and will be greatly dominated by the smallest ones. The solution can be improved by removing a certain number of terms with the smallest singular values in Eq. (2.15). This method is called truncated SVD regularization.

Alternatively, standard Tikhonov regularization can be used to mitigate the negative impact from measurement noise. Here the problem can be formulated as:

$$\hat{x}_{Tik} = \arg \min \| A x - p \|^2 + g^2 \| x \|^2$$ \hspace{1cm} (2.16)

where g is a parameter that weights the regularization. Eq. (2.16) can be solved and organized as

$$\hat{x}_{LS} = \sum_{j=1}^{J} c_j v_j \sigma_j^{-1} D_j^T p$$ \hspace{1cm} (2.17)

where c_j are weighting factors, defined as

$$c_j = \frac{\sigma_j^2}{\sigma_j^2 + g^2}$$ \hspace{1cm} (2.18)

As can be seen, g is used to regulate the relative weights between the SVD components, resulting in a weakened influence of the components with the smallest singular values.

To summarize, the ill-posedness of an overdetermined CAT problem can be alleviated by either removing (via truncated SVD regularization) or reducing the weights (via standard Tikhonov regularization) of the detrimental SVD components. For a more in depth review of these methods, the reader is referred to [127].

2.3.2. Regularization for rank-deficient problems

In contrast to the discrete ill-posed problems, in which the reconstruction error is dominated by noise contamination, the rank-deficient (underdetermined) problems suffer from insufficient posterior information, i.e. an insufficient number of LOS measurements. To compensate for this, additional a priori information should be included in the analysis [116]. In CAT, the mostly widely used prior information is the non-negativity constraint and a smoothness condition for the target flow field. In this case one can perform a so-called constrained first order Tikhonov regularization, which accommodates this information as follows

$$\hat{x}_{nc} = \arg \min \| A x - p \|^2 + g^2 \| L \hat{x} \|^2$$ subject to $x \geq 0$ \hspace{1cm} (2.19)

where L is a Laplacian matrix that is used to enforce the smoothness condition. It is defined as

$$L_{ij} = \begin{cases} 1 & i = j \\ -1/n_i & i \text{ neighbors } j \\ 0 & \text{ otherwise} \end{cases}$$ \hspace{1cm} (2.20)

where n_i is the number of neighboring pixels for the ith pixel.

We note that constrained first order Tikhonov regularization can also be applied to discrete ill-posed problems discussed in the previous section; in this case, the regularization not only dampens the instability caused by small singular values, but also enforces a priori information such as non-negativity and spatial smoothness. For this to be effective, g needs to be carefully chosen so that neither the a priori (smoothness) nor a posterior (measurements) information dominates over one another. So far, two methods have been reported for successful estimation of g in absorption tomography, the so-called L-curve method or a method based on SVD. The former approach will be illustrated in detail in Section 3.2.2. The SVD method suggests that the first l values (corresponding to the number of beams) of singular values of the augmented matrix $[A; \lambda L]$ should not be larger than the singular values of $[A]$. In contrast the remaining (J-l) singular values of $[A; \lambda L]$ should be as large as possible. In this case, the regularization does not significantly affect measurement fidelity while at the same time providing additional SVD components (from the smoothness condition), which provide maximal noise immunity. Other interesting techniques might be feasible for a determination of g, such as the unbiased predictive risk estimator method or the generalized cross validation method, however their merits in CAT have not yet been demonstrated. For more details the interested reader is referred to [209].

2.3.3. Regularization via Bayesian formulation

As mentioned, the negative effects of ill-posedness can be mitigated through incorporation of prior information, as was shown for the constrained Tikhonov regularization in the previous section. An alternative approach has recently been demonstrated for CAT and shown promise. It is based on a Bayesian formulation of the problem, which provides a versatile tool to integrate a variety of prior information in the inversion process. This can then be solved via maximum a posterior (MAP) estimation. Here, we provide one example to show how the spatial smoothness and non-negativity priors can be utilized in combination with the measured information in a
The Bayesian formulation of the problem that enables improved reconstruction. According to the Bayes' theorem, the CAT inversion can be modeled as a MAP estimation problem as

$$prob(x|p) = \frac{prob(p|x)\cdot prob_{\text{NN}}(x)\cdot prob_s(x)}{prob(p)}$$

(2.21)

where \(prob(x|p)\) is the probability that a specified flow distribution \(x\) is the right one when the measurement data \(p\) is observed; \(prob(p|x)\) is the probability that the measurement data \(p\) occur for a given distribution \(x\); \(prob_{\text{NN}}(x)\) and \(prob_s(x)\) are the probabilities that the specified \(x\) satisfies the smoothness and non-negativity priors, respectively; and \(prob(p)\) is the marginal probability of the measurement data \(p\).

The values of \(prob(p|x)\) are always smaller than unity in the presence of measurement noise and their distribution can be predicted by Eq. (2.22), below, if the noise spectrum is assumed to be normally distributed.

$$prob(p|x) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \prod_{i=1}^{l} \exp \left[-\frac{(p_i - A_i x_i)^2}{2\sigma_n^2} \right] = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp \left[-\frac{\|p - AX\|^2}{2\sigma_n^2} \right]$$

(2.22)

Here \(\sigma_n\) is the standard deviation of the measurement noise.

The non-negativity condition can now be implemented as

$$prob_{\text{NN}}(x) = \prod_i H(x_i)$$

(2.23)

where \(H\) is a step function that equals zero for \(x_i < 0\) and is unity otherwise.

The smoothness condition can on the other hand be defined as

$$prob_s(x) = \exp[-\vartheta \|LX\|^2]$$

(2.24)

where \(\vartheta\) is a scalable factor.

Combining the above equations and setting \(g^2 = 2\sigma_n^2\), one obtains a likelihood objective function from Eq. (2.21) that can be written as:

$$prob(p|x) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp[-\|p - AX\|^2 - g^2 - \|LX\|^2] * \prod_i H(x_i)$$

(2.25)

One can see that Eq. (2.25) can be maximized by minimizing \(\|p - AX\|^2 + g^2 + \|LX\|^2\) subject to \(x \geq 0\); this turns out to be exactly analogous to a first order Tikhonov regularization with a non-negative constraint.

It has to be noted that by customizing Eq. (2.21), more prior information in addition to smoothness and non-negativity can be easily accommodated. Bayesian formulation can further include temporal information as prior. An example has been demonstrated where data from computational fluid dynamics simulations have been combined with CAT measurements data to improve the reconstruction and the method works well even in low SNR measurement situations [127].

To summarize, the regularization strategy should be chosen according to both the nature of the ill-posedness and how much prior information is available. For discrete ill-posed problems which suffer majorly from the measurement noise, a truncated SVD or standard Tikhonov regularization can be applied to reduce the impairing effects of SVD components with small singular values. For rank-deficient problems, additional prior information such as prior information effectively. Since regularization is a universal topic for all variants of tomography, it has been studied extensively and the authors are referred to [127,223–225] for a more comprehensive and detailed discussion.

2.4. Experimental considerations

The objective of a CAT experiment is to collect transmission/projection data as the input for the inversion algorithms. A typical setup consists of light sources to generate the probing beams, a detector to capture the transmitted light intensity, and a data acquisition system. A means to displace the probing beams spatially in a...
reproducible fashion is critical since this determines the spatial sampling efficiency and thus the reconstruction quality. In addition, as an imaging technique, the quantification of spatial resolution is also a crucial topic as it defines the applicability of TAS. The following sub-sections will reflect on these considerations.

2.4.1. Light sources and detectors

Various light sources have been used, or proposed, for tomographic CAT measurements including HeNe lasers [170,198,221,226,227], KCl-Li color-center lasers [171,222,228], semiconductor lasers (both tunable and single-mode) [112,114,155,162–165,174,178–180,184,185,193–197,199,200,216,229–236], Nd:YAG lasers, dye lasers [237], Ar-ion lasers [188], light-emitting diodes [183], tunable fiber-ring lasers [119,238], Fourier Domain Mode-Locking (FDML) lasers [239,240], supercontinuum radiation sources [117], and frequency-combs [161].

The most widely adopted technology consists of tunable semiconductor lasers (TSLs), which offer advantages of low cost, narrow emission line-width, rapid wavelength-tunability, and operation at room-temperature. Furthermore, a broad wavelength range is available, e.g. 400–3000 nm for tunable diode lasers (TDLs) 3 to 6 μm for interband cascade lasers (ICLs), and 6 to 14 μm for quantum cascade lasers (QCLs) [242,243]. Note that lead-salt lasers used in early applications [235] can today be replaced with QCLs [235]. Depending on how the laser radiation is emitted, TSLs can be categorized into surface-emitting and edge-emitting lasers, respectively. The selection of longitudinal laser modes in TSLs can be realized either within the cavity itself or externally and a few popular geometries are shown in Fig. 5 above. The structures of TSLs include distributed feedback (DFB), distributed Bragg reflector (DBR), external-cavity Littrow (EC-Littrow), external-cavity Littman (EC-Littman), and vertical cavity surface-emitting as illustrated in Fig. 5 [241,242,244–247]. Panel (a) shows the structure of a DFB laser, where a Bragg reflector is positioned above the gain medium. The Bragg reflector is made of hundreds of dielectric layer pairs, each containing two layers with slightly different refractive indices and acting as a reflective filter with a narrow bandwidth (tens of MHz). Typically, one facet of the DFB laser is high-reflection (HR) coated so that most of the light can be channeled out through the other end which is anti-reflection (AR) coated. Wavelength tuning can be realized by either modulation of the driving current (fine tuning) or chip temperature (coarse tuning), which induces thermal expansion and mechanical strain, causing variations in the periodicity of the Bragg reflector [248]. Panel (b) shows the structure of a DBR laser in which the Bragg reflector is positioned adjacent to one AR coated facet and the other facet is low-reflection (LR) coated. For DFB/DBR lasers, the wavelength-selection element is integrated in the semiconductor chip. However, wavelength selection can also be implemented outside of the chip. For example Panel (c) shows the external cavity Littrow (EC-Littrow) configuration in which one facet is HR-coated and the other one AR-coated [246]. The emitted light is collimated with a lens and shone on a diffraction grating, which feeds the first order diffracted beam back into the chip. Both the output wavelength and the propagation direction can be adjusted by rotating the grating. The uncertainty in beam orientation limits its applications for CAT. Panel (d) shows the EC-Littman structure in which the grating is fixed and an additional reflective mirror is introduced. This configuration guarantees a fixed output direction and a narrower line-width at the cost of reduced power since the loss incurring, and wavelength-dependent, diffraction occurs twice. Panel (e) shows the vertical cavity surface-emitting structure of a laser diode which includes two Bragg gratings both on top and bottom of the gain medium. Compared with DFB/DBR lasers, VCSELs can achieve a broader spectral tuning range and a higher modulation bandwidth, which makes them more suitable for high pressure applications [246]. It has to be noted that CAT has been evolving for decades and some of the lasers that had been used in the past are now obsolete and have been replaced with a new generation of laser sources. Great potential exists for supercontinuum sources, which will be discussed in the nonlinear tomography chapter at a later stage in this review.

For the previous implementations, semiconductor photodetectors as well as photomultiplier tubes were used for signal registration. Table 3 summarizes the lasers and detectors that have been used. A more detailed summary of the detector technologies can be found in [233,236,238,249].

Table 3
Summary of lasers and detectors traditionally used in CAT.

<table>
<thead>
<tr>
<th>Flow species</th>
<th>Wavelength range</th>
<th>Light sources</th>
<th>Detectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>NIR</td>
<td>TDLs [98,163,178–180,193,195,197,229,232]</td>
<td>Ge, InGaAs</td>
</tr>
<tr>
<td>NH3</td>
<td>NIR</td>
<td>DFB-TDLs [196]</td>
<td>InAs</td>
</tr>
<tr>
<td>CO2</td>
<td>NIR, MIR</td>
<td>TDLs [235,250], KCL-Li CCL [171,228], glow bar [251]</td>
<td>InSb, InAs</td>
</tr>
<tr>
<td>CO</td>
<td>MIR</td>
<td>DFG [175], TDLs [164]</td>
<td>InSb, HgCdTe</td>
</tr>
<tr>
<td>CH4</td>
<td>NIR, MIR</td>
<td>TDLs [162], HeNe [170,198,221,227]</td>
<td>InGaAs, PbSe, pyroelectricity detector</td>
</tr>
<tr>
<td>Ar</td>
<td>NIR</td>
<td>TDLs [184,185]</td>
<td>Uncooled photodetectors</td>
</tr>
<tr>
<td>Hydrocarbon</td>
<td>NIR, MIR</td>
<td>TDLs [114], HeNe [226]</td>
<td>InGaAs, HgCdTe</td>
</tr>
<tr>
<td>CO, CO2, CH2COOH, and CH3COCH3</td>
<td>MIR</td>
<td>FTIR [187]</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>VIS</td>
<td>TDLs [216]</td>
<td>Si</td>
</tr>
<tr>
<td>Soot</td>
<td>VIS</td>
<td>Lamp [252]</td>
<td>Photomultiplier tubes</td>
</tr>
<tr>
<td>I2</td>
<td>VIS</td>
<td>Argon-ion laser [188]</td>
<td>Si</td>
</tr>
</tbody>
</table>

2.4.2. Beam arrangement and optimization

As illustrated in Fig. 6, there are three types of beam arrangement for CAT, which are fan-beam [253], parallel-beam [175], and irregular-beam [114,169,232] arrangements respectively. In fanned beam implementations, a diverging beam arrangement is used to produce various projections directions as shown in Fig. 6(b). Mathematically, the fan-beam setting (Panel (b)) is equivalent to the parallel-beam version (Panel (a)). However, in an experimental sense, the optics is simpler to set up for the former. On the other hand, the energy density of the fanned beams is lower than the line illumination that is usually used in a parallel-beam arrangement, resulting in a smaller SNR. Irregular-beam arrangements (Panel (c) and (d)) have also been used in practical scenarios, in cases where optical access is extremely limited, such as internal combustion engines [114,155,169,177].

The motivation for optimizing the beam arrangements is four fold [169,255–257]: 1) limited optical access in most practical applications; 2) beam obstructions, e.g. the beams cannot pass the central axial of the drive shaft of an internal combustion engine; 3) cost caused by requirement for multiple lasers and detection systems; and 4) better beam arrangements to reduce perturbations from measurement noise. The beam arrangement can be optimized using the concept of the resolution matrix [255], which will be derived here. As mentioned earlier, the tomographic problem results in a linear equation system described by Eq. (2.6), which is usually rank-deficient and underdetermined due to the limited number of projections. In order to make the equation system complete, a priori information such as the smoothness of the distribution of the absorption coefficients should be included and the optimal solution
can be obtained from a least squares minimization as
\[
\hat{x}_{LS} = \arg \min \| A \hat{x} - \hat{p} \|^2 + g \| L \hat{x} \|^2
\] \hspace{1cm} (2.26)
where \(L \) is a matrix operator that performs the regularization and \(g \) is the regularization factor that controls the strength of the \(a \) priori information. By taking the derivative of the RHS, the corresponding Euler equation can be obtained as
\[
(A^T A + g L^T L) \hat{x}_{LS} = A^T \hat{p}
\] \hspace{1cm} (2.27)

The Euler equation can be directly solved and reorganized as
\[
\hat{x}_{LS} = (A^T A + g L^T L)^{-1} A^T \hat{p}
\] \hspace{1cm} (2.28)
\[
= \hat{x}_{\text{exact}} + (AA^T)^{-1} \hat{p} + AK
\]
\[
= \hat{x}_{\text{exact}} + (R-I) \hat{x}_{\text{exact}} + AK
\]
where \(R \) is the so-called resolution matrix and \(I \) the identity matrix.

The reconstruction error contains two parts, which are the regularization error \((R-I) \hat{x}_{\text{exact}} \) and the perturbation error \(AK \), respectively. For applications with limited optical access, the equation system would not be complete and the regularization is used as a filter that selects a solution that satisfies the measurements and at the same time matches the \(a \) priori information best. It has been shown that for limited-data tomography, the perturbation error is negligible over a wide range of \(g \) and the regularization error dominates [113].

In this case, the optimal beam arrangement can be achieved when the regularization error is minimized. The error can be quantified as the Frobenius norm [255] of \((R-I) \), defined as
\[
F(\hat{y}) = \| R(\hat{y}) - I \|_F^2
\] \hspace{1cm} (2.29)
where \(I \) is the identity matrix, \(\hat{y} \) is a vector of complex numbers, each of which contains the position \(t \) (real part) and orientation \(\theta \) (imaginary part) of a specific beam. The beam arrangement optimization can now be converted into a minimization problem, which can be solved with a global minimizer such as the genetic algorithm [256]. However, \(F \) is a good predictor for the reconstruction error only when the number of beams are the same for all arrangements. Otherwise, \(F \) has to be normalized by the number of beams so that arrangements with different numbers of beams can be compared in terms of efficiency.

2.4.3. Quantification of spatial resolution

As an imaging technique, the spatial resolution (SR) of CAT is a critical parameter for practical applications. However, there are only a few studies available so far on this topic, for the following reasons: 1), the tomographic images are synthetic (i.e. reconstructed) and the quantification of SR is not as straightforward as is the case for planar imaging techniques; 2), there is a plethora of ways to define SR (see [258]); 3), an experimental determination of SR is non-trivial for CAT, because valid experimental phantoms are difficult to construct for gaseous flows; 4), the SR for practical turbulent flames cannot easily be inferred by applying the same tomographic system to validation phantoms, because the SR does not only depend on the spatial sampling (i.e. the beam arrangement) used, but also on the SNRs of the individual LOS measurements. These may be dramatically different for different measurement objects; 5), even within a flow field, the SR may thus differ from position to position, as they are sampled with different beams and thus likely to result in various SNRs; and finally, 6), since noise levels of the LOS measurements evolve over time, the SR changes even for the same position within the imaging plane. There is still a lot of work to be done to provide a framework for a quantitative comparison of SR between different measurement scenarios in CAT. We provide an introduction to the topic in this section, so that the reader can appreciate the challenges and current thinking on this topic. We follow the approach taken in [258], where SR was defined as a measure of the ability to resolve non-overlapping features within the imaging space. In the article, the authors quantified the SR through the calculation of a modulation transfer function (MTF). The latter can theoretically be obtained either from measurements of a point spread function (PSF), a line spread function (LSF), or an edge spread function (ESF). However, it is almost impossible in practice to fabricate point or line phantoms with gaseous flows, and the authors demonstrate that the generation of an ESF via two parallel flows is much more convenient to achieve [258]. From the ESF, one can calculate the LSF, and PSF as follows:

\[
\frac{d}{dx} \text{ESF}(\sigma, \rho) = \text{LSF}(\sigma, \rho) \leftrightarrow \text{PSF}(\sigma, \rho_0) = \text{PSF}(\sigma, \rho_0)
\] \hspace{1cm} (2.30)

where \(\rho \) and \(\sigma \) are the axis parallel and perpendicular to the edge respectively; and \(\rho_0 \) defines a specific location along the edge. The assumption here is that the PSF is rotationally symmetric, in which case the LSF is a good approximation for it. The MTF can then be calculated as a measure of SR as follows:

\[
\text{DFT}[\text{PSF}(\sigma, \rho_0)] \leftrightarrow \text{MTF}(f_1)
\] \hspace{1cm} (2.31)
where DFT means discrete Fourier transform and \(f_1 \) stands for the spatial frequency along the \(\sigma \) axis. The MTF thus obtained provides the experimentalist with a useful measure to adjust experimental parameters, such as spatial sampling, beam size, to maximize SR and also to assess reconstruction artefacts that come from measurement noise and discretization errors.

2.5. Applications

2.5.1. Overview

CAT has found numerous applications in practical flow diagnostics. The applications are summarized into the following three categories:

- **Laboratory flames**
 Wondraczek et al. demonstrated their system using a DFG-based laser source on a flat-flame burner [175]; Villarreal and Varghese demonstrated their system on an axis-symmetric flat-flame burner [235]; Wang et al. demonstrated their system on NH\(_3\) flows [196] and also a premixed methane/air [98] flame; Liu et al. demonstrated their fan-beam system on an axis-symmetric flat flame [254,259]; Mcnesby et al. performed tomographic analysis to provide a correction to low-pressure stoichiometric premixed CH\(_4\)/O\(_2\) flame
temperature measured with LOS two-line thermometry [164]; Hall et al. used CAT to image the temperature of sooting flames [252]; Ouyang et al. demonstrated their system on an axis–symmetric porous ceramic burner to measure the CO2 concentration [165]; Silver et al. used CAT to measure spatial distribution of H2O in laminar non-premixed ﬂames [163]; Dahm et al. used CAT to map local mixture fraction in a microgravity vortex ring diffusion ﬂame [162] to study how differential diffusion affects flame–vortex interactions; Baum et al. used CAT to obtain the ﬁeld of mixture fraction of a plume to evaluate predictive ﬁre models [187]; Gouldin et al., demonstrated their technique on a ﬂat burner [228], a non-reacting laminar ﬂow [170], a steady non-reacting ﬂow of methane and argon [221], and forced jet ﬂows to study dynamics and structures of these jets [171]; Santoro et al. applied their system to an off-axis turbulent methane–air free jet to determine the mean methane concentration throughout the mixing region [227]; and Shimizu and Sakai demonstrated a tomographic system on a pulsed jet ﬂame for temperature and sodium number density imaging [260].

ii) Practical combustors

Kawazoe et al. applied their system to an internal combustion gasoline engine to investigate the hydrocarbon fuel distribution [186]; McCann’s group has developed tomographic systems for the measurement of hydrocarbon fuels within automotive engines [114,155,156,199,231,236,238,249]; Dahm et al. tested their sensor on a model gas turbine combustor for potential monitoring of premixing degree of fuel and air [198]; Bryner et al. demonstrated a proof-of-concept system for simultaneous imaging of both temperature and species concentration on a ﬂat burner [180]; the system was later applied to the exhaust plane of the University of Virginia’s Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCF) [178,179] to calculate the combustion efficiency; Deguchi et al. developed a CAT system for measurements of 2D temperature distributions in diesel engine exhausts [229]; and Lindstrom et al. used CAT to study the shock train structure in the isolator section of the supersonic combustion facility at Wright-Patterson AFB [232].

iii) Other applications

Belotti et al. used CAT to reconstruct distributions of CO2 over a volcanic site [250]; Bennett et al. were the ﬁrst to demonstrate the fan-beam tomography for tomography of gas dynamics and measured the distribution of an iodine-vapor plume to experimentally conﬁrm a predictive noise theory [188]; Zhang et al. used their system to study development of arcjet plumes as well as how the mass ﬂow rates and discharge current affect maximum temperature and argon number density [184]. Kasyutich et al. used CAT to recover water vapor concentration to better understand the chemical mechanisms of the chemical vapour deposition process, aiding in the design of new coating heads and providing a possible tool for process control leading to optimized ﬁlm properties [195]; Salem et al. used their tomographic sensor to map the H2O concentration to investigate the breakthrough of a packed bed adsorber [197]; and Kauranen et al. demonstrated their high-sensitivity system for the measurement of weak-absorbing O2 gas ﬂows [216].

2.5.2. Principle of two-line imaging thermometry

The principle of CAT for simultaneous imaging of temperature and species concentration is summarized here. By performing the tomographic reconstructions at two pre-selected transitions (ν1 and ν2) with different temperature dependencies, two maps of integrated absorbance can be obtained. According to Beer’s law, the integrated absorbance at frequency of ν in the jth pixel is defined as

\[\alpha_{\nu} \cdot L \cdot d\nu = \int P \cdot \Phi(\nu) \cdot S(T) \cdot X \cdot L \cdot d\nu = P \cdot S(T) \cdot X \cdot L \]

where \(\alpha_{\nu} \) [cm\(^{-1}\)] is the absorption coefﬁcient at a frequency of \(\nu \), \(P \) [atm] the pressure, \(\Phi \) is the lineshape, \(S \) [cm\(^{-2}\) atm\(^{-1}\)] the line strength of temperature \(T \), \(X \) [K] the real temperature, \(X \) the species concentration, and \(L \) [cm] the absorption path length. As can be seen, the integrated absorbance is a nonlinear function of \(T \), but a linear function of both \(X \) and \(P \). The ratio between the integrated absorbance at \(\nu_1 \) and \(\nu_2 \) for the jth pixel can be
calculated as
\[
R_j = \frac{\alpha_{a_j} L \cdot dv}{\sum \alpha_{a_j} L \cdot dv} = \frac{S_1(T_j)}{S_2(T_j)} = \frac{S_1(T_0)}{S_2(T_0)} \exp \left[- \frac{hc(E_2 - E_1)}{k} \left(\frac{1}{T_j} - \frac{1}{T_0} \right) \right]
\]
(2.33)

where \(T_0 \) [K] is the reference temperature, \(T_j \) [K] the real temperature of the \(j \)th pixel, \(h \) [J/s] Planck's constant, \(c \) [cm/s] the speed of light, \(k \) [J/K] Boltzmann’s constant, and \(E^\ast \) [cm\(^{-1}\)] the lower state energy. Therefore, the temperature \(T_j \) can be obtained from
\[
T_j = \frac{hc(E_2^\ast - E_1^\ast)}{\ln R_j + \ln \left(\frac{S_1(T_0)}{S_2(T_0)} \right) + \frac{hc(E_2^\ast - E_1^\ast)}{k} \left(\frac{1}{T_0} - \frac{1}{T_j} \right)}
\]
(2.34)

Assuming an atmospheric pressure, the molar fraction \(X_j \) can then be calculated as
\[
X_j = \frac{a_{a_j}}{S_1(T_j)}
\]
(2.35)

2.5.3. Exemplar engine measurements

As mentioned earlier, CAT is highly complementary to planar imaging techniques and is more suitable for applications where optical access is severely limited such as engine measurements. Fig. 7 shows an exemplar CAT imaging system [114], which was designed for the imaging of hydrocarbon distributions in a 4-cylinder automotive gasoline engine (Ford Duratec New I4). The system was tested extensively in laboratory phantom experiments [169] prior to the engine tests. The key components of the system include an OptiCal Access Layer (OPAL), as shown in Fig. 8(a) and an optoelectronic system. The OPAL defines the optimized layout of 27 measurement beams and is illustrated in Fig. 8(b). Two fiber-coupled diode lasers, with a wavelength of 1700 and 1651 nm respectively, were used to probe the reactive flow within one cylinder of the engine. The 1700 nm laser was used to measure the hydrocarbon absorbance, and the 1651 nm laser was used to probe a non-absorbing wavelength for intensity referencing. The intensity of both lasers was modulated at a frequency of 500 kHz and 300 kHz, respectively using a direct digital synthesis module. An integrated wavelength multiplexing fiber coupler and a 1 x 32 splitter connects the sources to the launch channels of the OPAL using single-mode fibers. On the detection side, multi-mode fibers transfer collected radiation to InGaAs photodiodes. The transmitted signals were recovered using lock-in amplifiers for demodulation of both wavelengths before transfer to a PC for post-processing. A relatively homogenous fuel vapor distribution was generated within the cylinder for a validation experiment. The pressure inside the cylinder was monitored with a transducer; and the absorbance was assumed to be independent of temperature (the temperature variation was calibrated up to 150 °C i.e. the limit of the laboratory setup, and was found to be approximately constant [155]). Before reconstruction, the quality of the measurements was...
examined and data with an SNR below a certain threshold were removed. The remaining data were then used for reconstruction.

Fig. 9 shows the reconstructions for six sequential engine cycles using 15 qualified beams. The data sets were collected with the engine running at 1500 rpm and 1.5 bar BMEP (brake mean effective pressure) load, conditions under which the fuel distribution was expected to be homogeneous. Each row represents one of the six fired cycles, over the period between 150° crank angle (CA) and 30° CA before top dead center (TDC) with intervals of 30° CA. The reconstructions were quite homogenous and the absorption increased as the fuel was compressed, as expected. Fig. 10 shows the reconstruction for one engine cycle in the period from 42° to 30° before TDC sampled at 3° CA intervals. They were obtained under the same engine conditions and using the same probing beams as Fig. 9. The distribution of hydrocarbons varies significantly between neighboring crank angles and was successfully captured by the imaging system. The measurements were validated qualitatively by comparing the reconstruction to an estimated homogeneous distribution assumed for the phantom. The same opto-electronic system, with 31 beams arranged in four parallel-beam projections, was successfully used to image fuel distributions in single-cylinder optical research engines, with direct fuel injection, running in both the spark ignition mode [156] and the compression ignition mode [261].

For this application with limited optical access, absorption tomography is uniquely qualified as an imaging technique that can be applied without requirement for significant modification of the mechanical and thermal properties of the engine. Nevertheless, the implemented CAT system suffers from several disadvantages. For example, referencing is mandatory to monitor the measured laser intensity in absence of absorption, and the method is adversely affected by mechanical deformations of the engine, for example due to pressure changes. Furthermore, some probing beams may become unusable due to lens contamination, making the data collection inefficient. The aforementioned limitations can be alleviated/overcome by introducing a new imaging concept, which we have called nonlinear absorption tomography, and its combination with recent developments in frequency-agile absorption spectroscopy and 1/f-normalized CFWMS. These will be introduced and discussed in the next chapter.

3. Absorption-based nonlinear tomography

As can be seen from the previous chapter, CAT processes the projections measured at a single transition of the target species in the tomographic reconstruction [196,198]. Theoretically, to make the equation system full-rank, intensive spatial sampling is necessary to obtain a sufficient number of equations. This increases experimental complexity to provide access for projection deliveries. However, in practice, applications such as engine measurements, have only limited optical access and only a few projections will be available; the ill-posed nature of the resulting inversion problem worsens. To alleviate this problem, many algorithms that work well for limited-data tomography have been adopted from X-ray tomography and adapted to CAT for combustion diagnostics. As mentioned earlier, in practical implementations, an irregular beam arrangement was also adopted to maximize the spatial sampling efficiency, which increases the complexity of the experimental setup. In addition, classical tomography is limited in nature since it can only be applied when the physical quantity to be reconstructed is integratable (accumulative) along the LOS. Such requirements greatly limit the compatibility of CAT with more advanced absorption techniques. In addition, for luminous reactive flows, the tunable diode laser is the mainstream laser source but this features only a limited spectral range in the near-infrared, making the simultaneous measurement of multiple species difficult.

Facilitated by recent advances in broadband, narrow linewidth, high repetition rate wavelength-swept laser sources, the simultaneous sampling of numerous absorption features from multiple flame species has now become possible [24,25,262–267]. On the other hand, the recent developments in tunable semiconductor lasers [243,246,268–270] and in frequency-multiplexed CFWMS [271–276] also enable the simultaneous detection of multiple orders of harmonic signals. Encouraged by this progress, a new breed of tomographic techniques, which sample not only the spatial but also the spectral and/or harmonic domains were recently proposed. As opposed to CAT, in which the target field is linearly related to the LOS measurements, the target fields in the new variant have nonlinear dependencies on the LOS measurements. In this case, the inversion problem can be numerically modelled as the solution to a set of nonlinear equations.

![Fig. 11. Definition of a 1D projection in nonlinear tomography.](image-url)
whose variables are the profiles of temperature and species concentration. This circumvents the step of retrieving the distribution of absorption coefficients as required in CAT [117,118]. The result is a new imaging concept, which we call nonlinear tomography, which brings additional capacities. For example, it was numerically demonstrated that pressure imaging is possible with this concept [117], pushing the application limit of absorption tomography to scenarios where pressure non-uniformities cannot be ignored e.g. the flow field in a scramjet where shock waves prevail [277]. The aim of this chapter is to summarize the definition, mathematical formulation, simulative studies, and experimental demonstrations of absorption-based nonlinear tomography, ABNT.

3.1. Mathematical formulation of ABNT

In the previous chapter, it was seen that for linear tomography 1) the field has to be integratable along the LOS, and 2) the integration has to be physically meaningful. Such requirements prevent the implementation of CFWMS with CAT in scenarios where the optical depth is thick [116], since in this case the harmonic signals cannot be linearized and are not integrals of any physical quantity. Similar limitation exists for combination of other advanced spectroscopic techniques with CAT.

To overcome such limitations, the concept of absorption-based nonlinear tomography was recently proposed [117]. As opposed to CAT, which first recovers the profile of absorption coefficients, ABNT circumvents this intermediate process, by directly solving for the distributions of temperature, species concentration, and even pressure, avoiding the requirement that LOS signals have to be integratable.

The mathematical formulation of a typical nonlinear tomographic problem is the focus of this section. As shown in Fig. 11, multiple parallel monochromatic laser beams pass through the region of interest (ROI), which is discretized into a grid of $M \times N$ squares along the x and y directions respectively. The wavelength of the beams is labelled as λ_i; and the laser paths as l_q, with q enumerating all the beams. The measured LOS signals are denoted as s' and can also be predicted with the function P, which describes the physical interaction processes between the light and the ROI. They are a function of both the wavelength and the spatial distribution of multiple independent physical parameters denoted as m_0.

As in CAT, the assembly of LOS measurements along one orientation in nonlinear tomography is termed projection, which leads to a set of nonlinear equations as shown on the right of Fig. 11. If the monochromatic laser beams were replaced with polychromatic ones as shown in Fig. 12, then a 2D (i.e. lateral and spectral dimensions) projection can be obtained as shown on the right of the figure. Through rotational scanning of the ROI, a set of 2D projections can be obtained, resulting in a 3D (i.e. containing lateral, angular, and spectral dimensions) map as shown on the right of Fig. 13. As can be seen, each stack (indicated by a specific color) of the 1D projection shown in the figure is essentially the counterpart of a sinogram in CAT for a specific wavelength. The difference is that each element in the sinogram is treated as a nonlinear equation rather than a linear one as modeled in CAT. In addition, the nonlinear version of the sinogram can bear more dimensions including the harmonic dimension if CFWMS is used to detect multiple orders of harmonic signals. The sinogram contains a set of simultaneous nonlinear equations whose variables are the spatial distributions of the independent variables, i.e. m. The process of recovering μ from the nonlinear sinogram is called nonlinear tomographic reconstruction.

So far the feasibility of ABNT as an imaging concept has been demonstrated both with DAS [117] and CFWMS [118]. It has been shown that two orthogonal projections are sufficient for a successful tomographic reconstruction featuring intermediate spatial
resolution, but greatly improved temporal resolution. The mathematical formulation for both DAS and CFWMS are summarized in the following sections.

3.1.1. Mathematical formulation of DAS-based nonlinear tomography

In DAS-based nonlinear tomography, the function \(\Pi \) defines Beer’s law and \(\mu \) are the spatial distributions of the flow parameters such as temperature and species concentration. With the aid of nonlinear tomography, the absorption measurements taken at different transitions can be used simultaneously during the reconstruction process, which is not possible with CAT. In this case, by increasing the number of sampled transitions, we can effectively scale up the number of simultaneous equations but at the same time retain the number of variables, i.e. the flow parameters, at every coordinate. The inclusion of additional spectral information can effectively mitigate the harsh requirement for spatial sampling. However, in both the physical and the mathematical senses the spectral information is not equivalent to the spatial counterpart, and thus the deficiencies in spatial sampling can only be compensated to a limited extent by increasing the spectral sampling. However, the incorporation of multispectral information in the tomographic reconstruction will enhance the noise immunity as compared with CAT [120]. Since, in addition to spatial sampling, noise also has a determining effect on spatial resolution, a better immunity to noise will bring beneficial effects to the spatial resolution. In addition, there is no limitation per se in the number of projections that can be accommodated by the DAS-based nonlinear tomography, however, this comes with a commensurate loss in temporal resolution, due to the beam scanning requirement [108]. But in this case, DAS-based nonlinear tomography enjoys a much improved reconstruction fidelity, due to better immunity against experimental noise, such as originates from beam steering, window fouling, and etalon fringing [278].

The basic principles of DAS-based nonlinear tomography are illustrated in Fig. 14. To monitor multiple chemical species simultaneously in the reactive flow, broadband light sources such as supercontinuum radiation sources [22,24,25,262–267,279], frequency combs [23,280–282], and Fourier domain mode locking lasers [283–286] could be used to cover a large number of spectral signatures. For the tomographic measurements, the light source is split into multiple beams to map out the ROI or alternatively the beam is translated across the sample volume. This is shown in Panel (a) of Fig. 14, which also serves to illustrate the mathematical formulation of the problem. One of the laser beams positioned at the \(j \)th location, denoted by \(l_j \), is directed along the LOS across the non-uniform flow field (left sub-panel). Since the absorbance is accumulative over the absorption path length, the overall absorption spectrum along the LOS is obtained by summing up the spectra of each resolution element traversed by the laser beam (indicated by blue squares in Fig. 14(a)). This leads to a projection spectrum (right sub-panel) \(p(\lambda, j) \) with \(\lambda \) indicating the monitored wavelength. The absorption peaks that can be used for tomographic inversion are named as \(\lambda_i \) with the subscript specifying wavelength indices. The absorbance by the targeting species at \(\lambda_i \) is the summation of contributions from non-negligible neighboring transitions, as expressed by the following equation

\[
p(j, \lambda_i) = \sum_q \alpha_q^{(j)}(T_q, X_q) = \sum_q \sum_k \sum_l \alpha_q^{(j)}(\lambda_k, T_q, X_q) \cdot \phi(\lambda_k - \lambda_i, T_q, X_q) \cdot P \cdot \Delta
\]

where \(q \) is the index running through all grid squares crossed by the \(j \)th laser beam; \(\lambda_i \) the center wavelength of the \(k \)th contributing transition \(\alpha_q^{(j)} \) the absorbance at the \(i \)th peak wavelength in the \(q \)th square; \(T_q \) and \(X_q \), the corresponding temperature and concentration respectively; \(S \) is the line strength of the contributing transition; \(P \) the pressure; \(\Phi \) the normalized Voigt lineshape function, which approximates the convolution of the two dominant broadening mechanisms (Doppler and collisional); and \(\Delta \) is the grid spacing. Panels (b) and (c) of Fig. 14 illustrate how different flow parameters affect the spectrum of a specific absorption feature of water vapor. Panel (b) contains three example spectra modeled using data from a spectroscopic database with panel (c) showing normalized versions of the same spectra to allow a better comparison of their shapes. Each spectrum is modeled for a different combination of \(T_p, X_p \) and \(P_p \). Water vapor was chosen in the model due to its prevalence and abundance in hydrocarbon/hydrogen flames, and the availability of frequency agile laser sources to target this species. Collisional and Doppler are the dominant homogeneous and inhomogeneous broadening mechanisms and overall broadening is a convolution of the two, well approximated by a Voigt profile. At atmospheric pressure, the typical full width half maximum (FWHM) of absorption features is \(\sim \)0.1 cm\(^{-1}\) or \(\sim 0.02 \) nm in the near infrared and this can easily be resolved by the aforementioned laser sources. We want to point out here that beyond scanning rates of approximately 1 nm per ns, line broadening by the Heisenberg uncertainty principle becomes significant [262]. However, resolution down to 0.1 cm\(^{-1}\) resolution is achievable at moderate sweep rates (ca. 100 kHz) [262]. Also,
the features broaden quickly as pressure increases, which make them easier to resolve. It is found that, for the particular feature shown, the absorption intensity decreases with temperature and that the FWHM changes slightly due to the impact of temperature on both line strength and shape. Other spectral features may have different dependencies on temperature. It can also be seen that absorption strength varies almost linearly with concentration. However, the problem is further complicated by the non-uniform distributions of flow parameters. Looking at this problem from another perspective, all information about the flow parameters is contained in \(p(l_i, A_i) \); and through suitable mathematical formulation and post-processing, the entanglement of all these factors can be resolved and the spatially-resolved flow field information can be recovered.

The DAS-based nonlinear tomography seeks to reconstruct distributions of flow parameters over ROI and can be formulated into an algebraic nonlinear minimization problem with a cost function defined as

\[
D = \sum_{j=1}^{J} \sum_{f=1}^{F} \left(1 - p_c(l_j, A_j, T_{f,j}, X_{f,j}) / p_m(l_j, A_j) \right)^2
\]

(3.2)

where \(J \) and \(I \) denote the total number of laser beams and peak wavelengths used, respectively; \(p_c(l_j, A_j) \) the measured projection at the wavelength \(l_j \) along the \(j \)th laser beam; and \(p_m(l_j, A_j, T_{f,j}, X_{f,j}) \) the corresponding projection computed with reference to the Beer’s law with an appropriate spectroscopic database. The cost function, \(D \), provides a quantitative measure of the similarity between the reconstructed and the actual profiles. The terms contributing to \(D \) are the errors in projections, normalized to ensure their equal weighting in the optimization. In an ideal case, where measurements are noise-free and the spectroscopic database is accurate, \(D \) reaches its global minimum (zero) when the reconstructions match the true profiles. Additional information, such as smoothness conditions due to thermal and mass diffusion, can be incorporated to steer the optimization process toward a reasonably smooth solution by adding regularization terms into the cost function. For example, the smoothness of temperature can be implemented as the following regularization terms into the cost function. For example, the smoothness conditions due to thermal and mass diffusion, can be incorporated to steer the optimization process toward a reasonably smooth solution by adding regularization terms into the cost function. For example, the smoothness conditions due to thermal and mass diffusion, can be incorporated to steer the optimization process toward a reasonably smooth solution by adding regularization terms into the cost function.

\[
\tau(v) = \exp[-\alpha(v)] = \exp \left\{ -\frac{1}{L_2} \sum_{i} S[T(I), v] \cdot \psi[T(I), X(I), P \cdot (v - v_i)] \cdot P \cdot X(I) \right\}
\]

(3.7)

where \(L_1 \) and \(L_2 \) are the intersections between the laser beam and the boundaries of the region of interest (ROI); \(T(I) \) and \(X(I) \) the temperature and concentration along the LOS as a function of distance \(I \) respectively; \(v_i \) the frequency of the \(i \)th non-negligible transition.

Since \(\tau(t) \) is an even function with respect to \(t \), it can be expanded as a Fourier cosine series:

\[
\tau(v + a \cos(\omega t)) = \sum_{k=0}^{\infty} H_k(v, a) \cos(k \omega t)
\]

(3.8)

where \(H_k \) represents the \(k \)th order harmonic coefficient which can be calculated as

\[
H_0(v, a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \tau(v + a \cos(\theta)) d\theta
\]

(3.9)

\[
H_k(v, a) = \frac{1}{\pi} \int_{-\pi}^{\pi} \tau(v + a \cos(\theta)) \cos(k \theta) d\theta
\]

(3.10)

The 1st and 2nd harmonics of the signal (denoted by \(S_{H1} \) and \(S_{H2} \)) can then be calculated via Eqs. (3.11) and (3.12). The laser parameters i.e. \(l_0, l_2, \psi_1, \psi_2 \), and \(a \) are determined according to the method detailed in [287].

\[
S_{H1} = \frac{G_t}{2} \left\{ \left[H_1 + \frac{i_0}{2} (H_0 + H_2) \cos(\psi_1) + i_2 (H_0 + H_2) \cos(\psi_2) \right]^2 + \left[i_0 (H_1 - H_2) \cos(\psi_1) + i_2 (H_0 - H_2) \sin(\psi_2) \right]^2 \right\}^{1/2}
\]

(3.11)

\[
S_{H2} = \frac{G_t}{2} \left\{ \left[H_1 + \frac{i_0}{2} (H_0 + H_2) \cos(\psi_1) + \frac{i_2}{2} (H_1 + H_2) \cos(\psi_2) \right]^2 + \left[i_0 (H_0 - H_2) \sin(\psi_1) + \frac{i_2}{2} (H_1 - H_2) \sin(\psi_2) \right]^2 \right\}^{1/2}
\]

(3.12)

where \(\gamma_1 \) and \(\gamma_2 \) are weighting parameters employed to regulate the relative significance of \(a \) priori (smoothness) and posteriori (measured projections) information. The regularized minimization problem can then be solved via use of a global minimizer.
Here \(G \) is a scaling factor accounting for both the optical and electrical gains of the detection system and transmission losses caused by scattering, reflections, beam steering, window fouling, etc. By taking the ratio of Eqs. (3.11) and (3.12), the pre-factor cancels out. The result, labeled as \(S_{2f}/1f \), defines the 1f-normalized, 2f signal that provides a calibration-free measurement unaffected by \(G \). The normalized signal thus only depends on laser parameters and absorber properties (i.e. temperature and concentration) [288–290]. For CFWMS-based nonlinear tomography, Eqs. (3.11) and (3.12) actually serve as the function \(f \) as introduced in Section 3.1. It has to be noted that a more accurate model for the calculation of the 1f-normalized, 2f signals have been developed [276,291], which will be implemented in a future version of ABNT.

Fig. 15 illustrates how the CFWMS-based nonlinear tomography might be implemented in principle using currently available technology. Multiple laser diodes are used to probe multiple transitions of the target species at the line centers with frequencies of \(\nu_q \), and their output is combined using a wavelength multiplexer. Each of the diodes is modulated at a frequency that is different from the others so that its harmonic signals can be differentiated using lock-in amplifiers. The multiplexed laser source can then either be split into multiple beams to map out the ROI, or laterally translated across the ROI in a step-wise fashion at the cost of reduced temporal resolution. As illustrated in Fig. 15, a beam at the \(j \)th measurement location, \(i \), is attenuated on passage through the ROI by sample absorption, and picked up by a photo detector. The registered signal is digitized and post-processed using a lock-in detection algorithm, absorbing, and picked up by a photo detector. The registered signal is digitized and post-processed using a lock-in detection algorithm, implemented in software, to recover the harmonic signals. This recovers \(Q \) nonlinear equations for \(S_{2f}/1f \) at each \(i \), where \(Q \) corresponds to the number of transitions probed. Each \(S_{2f}/1f \) is a function of the profiles of temperature and species concentration along the LOS. Thus, the tomographic sampling essentially results in a 3D (angular, lateral, and spectral) sinogram and also a system of \(J \times Q \) coupled nonlinear equations. Similar to DAS-based nonlinear tomography, the current equation system can also be transformed into an optimization problem with an objective function defined as:

\[
F = D + \gamma_T \cdot R_T(T^{\text{trial}}) + \gamma_X \cdot R_X(X^{\text{trial}}), D = \sum_{j=1}^{I} \sum_{i=1}^{I} \left[1 - S_{2f}/1f(l_j, \lambda_i, T^{\text{trial}}, X^{\text{trial}})/(S_{2f}/1f(l_j, \lambda_i)) \right]^2 \tag{3.13}
\]

where indices \(i \) and \(j \) run through all the probed transitions and measurement locations respectively, \(S_{2f}/1f \) and \(S_{2f}/1f \) are the calculated and measured 1f-normalized, 2f signals respectively. By comparing Eqs. (3.4) and (3.13), we can see that the only difference between the cost functions is the term \(D \), which is the model that is used to predict the measured signal. So far, the pressure distributions have been assumed to be uniform in demonstrations of CFWMS-based nonlinear tomography. For applications with non-uniform pressure distributions, the situation becomes more complicated because the optimal modulation depth is lineshape-dependent, and both pressure and concentration have an effect on the line profile. However, the entanglement between pressure and concentration can be resolved just like in the FAT case because the 1f-normalized 2f signal has different dependencies on pressure and species concentration, i.e. the absorption signal has a strong nonlinear dependency on pressure but scales almost linearly with species concentration.
3.2. Numerical investigations

In contrast to CAT, which leads to a set of linear algebraic equations with local absorption coefficients as the variables, both DAS- and CFWMS-based nonlinear tomographies result in an algebraic nonlinear equation system. Because of this, none of the tomographic algorithms introduced in Chapter 2 can be applied here. As discussed in previous sections, the nonlinear tomographic problem is usually converted to an optimization problem, so that additional information such as the smoothness conditions acting as the constraints can be incorporated to alleviate the underdetermined problem and guide the optimization process towards a more sound physical solution. However, optimization, or to be more specific, minimization of the cost function, is not a trivial task since it involves hundreds, or even thousands, of variables, which create millions of local minima in the solution space and make the gradient-based techniques impractical. Thus, a robust global optimization algorithm is needed to escape local minima effectively and to land in the vicinity of the global minimum. It has been proven that heuristic algorithms such as the simulated annealing (SA) algorithm [294–298], genetic algorithm (GA) [299–301], and differential evolution (DE) algorithm [302–304] are efficient in solving large-scale optimization problems. So far, the SA algorithm has been favored for the solution of the nonlinear tomographic problems; it is briefly summarized here.

3.2.1. The simulated annealing algorithm

The SA algorithm is a well-established tool that has been widely employed in large-scale optimization problems to pinpoint the global minimum among interfering local minima. A well-recognized advantage of SA is its insensitivity to the initial guesses, which is a critical difference to derivative-based algorithms [119]. The SA concept originated from metallurgy and was first proposed in 1983 [15]. The algorithm mimics the annealing process of liquids, which are cooled down slowly until crystalization occurs, i.e., a state with minimal internal energy is reached. During the annealing process, the temperature of the liquid has to be lowered slowly enough such that the system can escape local energy minima via random thermal fluctuations; otherwise, the system can become trapped in a higher energy state. In the SA algorithm, the cost function that is to be minimized is analogous to the internal energy of the liquid system that has to be lowered. The corresponding parameter, \(T_{SA} \), is defined so that the annealing rate can be artificially controlled. The random “thermal fluctuations” are simulated mathematically by the so-called Metropolis criterion, whose algorithm is defined as:

\[
\text{if} \Delta F = F(\bar{x}_{\text{new}}) - F(\bar{x}_{\text{old}}) \leq 0, \text{ accept } \bar{x}_{\text{new}}
\]

else accept \(\bar{x}_{\text{new}} \) with probability

\[
p_{SA} = \exp\left(-\frac{\Delta F}{T_{SA}}\right)
\]

where \(x \) represents the variables of \(F; \bar{x}_{\text{new}} \) is obtained by randomly adjusting one of the variables in \(x_{\text{old}} \), and \(\Delta F \) is the change in the cost function. Eq. (3.14) represents the key step of the SA algorithm, in which a new solution \(\bar{x}_{\text{new}} \) is always accepted if it results in a lower \(F \); however, even a new solution which results in a higher \(F \) is not automatically rejected and is instead accepted with a certain probability \(p_{SA} \) (to mimic random thermal perturbations). During the annealing process, \(T_{SA} \) is gradually reduced, and the probability of acceptance as well as the magnitude of the thermal perturbations decrease, resulting in convergence toward the optimal solution within the searching space. The Metropolis criterion distinguishes SA from deterministic optimization algorithms, in which the improvement is always accepted and deterioration is always rejected.

The block diagram shown in Fig. 16 gives an exemplar implementation of the SA algorithm, which is detailed in [298]. Before the algorithm starts, the lower and upper bounds for the flow parameters, i.e., \(T \) and \(X \), are estimated. For better computational efficiency, a database \(\alpha \) of absorption coefficients for the chosen transition are pre-calculated for the flow parameters delimited by the bounds. The tomographic inversion process follows these two pre-processing steps and mainly consists of three computational loops. In the innermost loop (Loop 1), one variable of \(\bar{x}_{\text{mlm}} \) is adjusted randomly (to become \(\bar{x}_{\text{new}} \)) and the cost function \(F \) is then calculated. The adjustment is accepted or rejected according to the Metropolis criterion. The loop cycles through all the variables sequentially and is repeated for \(N_{T} \) times by the middle loop (Loop 2). The step lengths (the magnitude of \(x \) variations) are then optimized according to the acceptance rate [298]. The outermost loop (Loop 3) then repeats the middle loop for \(N_{T} \) times. If the convergence criterion is met after completion of the three nested loops, the algorithm will be terminated; otherwise the temperature \(T_{SA} \) is reduced \((T_{SA} = T_{SA} \times \zeta) \), where \(\zeta \) is a small number, e.g., 0.9, and the loops are iterated until the termination criterion is satisfied. The termination criterion can be set, e.g., as the relative improvement in \(F_{\text{opt}} \) between the last two or even more, consecutive temperature states \((T_{SA}) \). The higher the thermal perturbation, the more iterations the algorithms will go through, the annealing rate slows down as \(\zeta \) decreases, and the more likely the optimal solution can be located; however, this comes at the cost of
increased computational time. It can be inferred from the optimization process that the number of function evaluations will increase as the discretization grid becomes more finely spaced. Since the computational cost for each function evaluation also increases with pixel number, the computational cost increases exponentially with the size of the nonlinear tomographic inversion problem. It has been shown in [108] that the performance of ABNT will first improve and then deteriorate as the meshing scale increases.

3.2.2. Determination of the regularization factors
As introduced in the previous sections, one of the advantages of nonlinear tomography is that additional flow information can easily be accommodated in the cost function. For example, the smoothness conditions for temperature and species concentration profiles can be integrated in the cost function, via inclusion of regularization terms as shown in Eqs. (3.4) and (3.13). However, the regularization factors, which control the relative strengths of the posterior and a priori information have to be determined properly, so that a good approximation of the optimal solution can be obtained. For example, if the regularization factors are larger than optimal, then the final solution will be over-smoothed; in the opposite case, the smoothness conditions will not be satisfied. The method of choosing appropriate regularization factors was systematically investigated through numerical simulations in Ref. [306]. In the study, H2O was assumed to be the target species, and phantoms of T and X were created to mimic multimodal and asymmetric distributions as are typically encountered in practical combustion devices (Fig. 17(a)). The ROI was meshed into 10 × 10 square pixels. The simulations were performed for ten absorption transitions measured with two orthogonal projections, over ten LOS measurement locations. To quantify the reconstruction quality, the normalized temperature and concentration errors e_T and e_X were defined as

$$e_T = \| T_{\text{rec}} - T_{\text{true}} \|_1 / \| T_{\text{true}} \|_1,$$

$$e_X = \| X_{\text{rec}} - X_{\text{true}} \|_1 / \| X_{\text{true}} \|_1,$$

where superscripts distinguish between the phantoms as the ground truth distributions (‘true’) and the reconstructions (‘rec’); $\| \|$ denotes the 1-norm.

As discussed earlier in Section 3.1.1, the temperature affects the lineshapes of the absorption features and the species concentration has a major impact on the magnitude of the absorbance. Due to their distinct signal responses, the profiles of temperature and concentration can be recovered in two separate steps. As demonstrated in Ref. [306], faithful reconstruction of the temperature profile is achieved by optimizing Eq. (3.4), regardless of the quality of the concentration reconstruction. This is shown in Fig. 17(b) (squares), which was adapted from [306].
obtained when the regularization parameter γ_X is set to 0, i.e. no smoothness condition is applied for the spatial concentration distribution. The triangles represent the cases for $\gamma_X = 1 \times 10^5 \gamma_T$. Good performance is evident for γ_X spanning multiple orders of magnitude for both settings of γ_X. At a certain γ_T, both D and R_F, as defined in Eq. (3.13) contribute equally to the regularized cost function as shown in both Fig. 18(a) and (b). In this case, good solutions were obtained. Sensitivity analyses of this type can be used to provide guidelines for the selection of values for γ_T.

With the T distribution obtained from the previous discussion (denoted as T_{pre}), the reconstruction of species concentration becomes a linear inversion problem and can be written in the following matrix format:

$$
\bar{p}_m = S(T_{\text{pre}}, \lambda) \cdot \bar{X}
$$

(3.16)

where \bar{p}_m represents the LOS measurements and \bar{X} the concentration profile organized into column vectors respectively. S is a matrix with a dimension of 200×100 (20 beams, 10 cm/s, and 10 \times 10 pixels), which contains the calculated absorbance values for a pure absorbing gas at each transition line within each individual pixel that is covered by each LOS measurement using the obtained T_{pre}. Eq. (3.16) can be solved via least-squares minimization to yield \bar{X}. However, the S matrix is usually ill-conditioned, i.e. with a large condition number, and the solution of Eq. (3.16) is therefore usually compromised by noise. A linear regularization technique is necessary to alleviate the rank-deficiency of Eq. (3.16). The regularized version of Eq. (3.16) is defined as follows:

$$
\text{min} \| \bar{p}_m - S(T^{(c)}, \lambda) \cdot \bar{X} \| + g \cdot \| L \cdot \bar{X} \|
$$

(3.17)

where the $\| \cdot \|$ notation represents the Euclidean norm of a vector, L again is a regularization operator realized in a matrix format, and g is the corresponding regularization factor that controls the relative strengths of the two terms in Eq. (3.17). This regularization method is well-established and has been studied extensively [307–310]. The so-called L-curve method described in Ref. [308] can be applied to determine the optimal g for a valid solution of the concentration distribution.

The method involves the solution of Eq. (3.17) at different values of g and the calculation of the corresponding residual (the left term in Eq. (3.17)), and the regularization term $\| H \cdot \bar{X} \|$. When the two terms are plotted against each other, an L-shape curve is obtained as exemplified in Fig. 19(a). The optimal regularization factor is then determined by locating the position near the corner of the curve, which has the maximum curvature. In this example, a g_T of 10^{-10} and a g_X of 10^{-2} were used in a first step to obtain the T_{pre}, corresponding to an e_T of 1.44%. After the S matrix is evaluated using this T_{pre} obtained, Eq. (3.17) is solved for various values of g, ranging from $g = 10^{-9}$ to 10^3. The range of g is suggested by the following quantity:

$$
g^0 = \text{Tr}(S^T \cdot S) / \text{Tr}(H^T \cdot H)
$$

(3.18)

where Tr is the trace of the matrix. A good choice of g, according to Eq. (3.18), results in the residual and regularization factor to become comparable in magnitude [311]. Then, a range, centered at g^0, is determined to vary g. The corresponding values of g around the corner are labelled on the plot and, as Fig. 19(b) demonstrates, these values of g indeed yield a small e_X. In this example, the minimum e_X (4.9%) occurs at a g of $\sim 1 \times 10^{-4}$, which is very close to the turning point of the corner. As demonstrated in Ref. [120], this method yields a stable and accurate reconstruction of X.

3.2.2. Selection of the optimal transition lines

In both DAS- and CFWM-based tomography, multiple absorption transitions are used in the tomographic reconstruction. The selection of the optimal set of absorption transitions that can be covered by the laser sources are extremely important since their sensitivity and response to variations in temperature and species concentration vary greatly, which can significantly affect the reconstruction quality. The method of selecting the optimal set of transitions is detailed in Ref. [312] and is only briefly summarized here. In [263], a limited number of promising candidate transitions were pre-selected (only 15 were used in the demonstration to reduce the computational cost) according to criteria widely used in two-line thermometry methods with a view to maximize the temperature sensitivity of the LOS measurements. The details of the pre-selection can be found in Ref. [287]. The candidate transitions were then tested to solve the two-zone problems based on the hypothesis that if a set of transitions is optimal for a specific two-zone field, it should also be optimal for a general non-uniform field distribution. It has to be noted that for a two-zone problem, the absorption measurement obtained with different sets of transitions. The index of each set is ranked according to ascending values of ΔT_{max}. This figure was adapted from [312], with the permission from SAGE Publications.
cannot distinguish the order of the two zones, even though correct \(T \) and \(X \) can be recovered for both, as demonstrated in Fig. 20(a) and (b). Fig. 20(c) illustrates how a series of two-zone problems is conceptually equivalent to a 1D problem with higher resolution. The field can first be decomposed into two zones with \((T_1, T_2, X_1, X_2) \) representing the average \(T \) and \(X \) for each zone respectively. This process is then repeated until the desired resolution is achieved. The subsets of the pre-selected transitions are then used to solve representative two-zone problems. Each subset is used to solve the problem repeatedly and the worst case featuring the maximal \(D_T \) (defined in Eq. (3.19)) is recorded.

In the demonstration, all possible combinations of 4 out of the 15 pre-selected transitions were used to solve five basic two-zone problems. An artificial Gaussian noise of 1% (relative) was added to the LOS measurements to simulate experimental conditions. The \(D_T \)'s of each combination were calculated according to Eq. (3.21) and the maximum \(D_T_{\text{max}} \) recorded. The overall \(D_T_{\text{max}} \) was then obtained by summing up the \(D_T_{\text{max}} \) obtained from each individual two-zone problem. The temperature error \(e_T \) obtained using each combination is plotted in Fig. 21 with \(D_T_{\text{max}} \) arranged in an ascending order, so that the correlation between \(e_T \) and \(D_T_{\text{max}} \) can be easily observed. The best 50 combinations feature a consistently smaller \(e_T \) and variance than the worst 50 combinations, which proves the validity of the method. Results from the selected optimal set of transitions were compared to those of a non-optimal set for various representative phantoms, of which four are shown in Fig. 22. The same conclusions were drawn for all examples. Hence, here we only reproduce one such example from [312] in Fig. 23. It clearly shows that the optimal transition set outperforms the non-optimal set.

3.2.4. Time-correlated reconstructions

It has been demonstrated that a high temporal resolution, reaching MHz repetition rates, can be realized for tomographic measurements. But the associated high cost for the tomographic reconstructions is often intractable. On the other hand, reactive flows can often be approximated to be smooth in the temporal domain, such that there is a correlation between consecutive measurement frames. This can be taken advantage of to reduce the size of the optimization problem, i.e. the number of variables, and hence the computational complexity is decreased. Even dynamic events, such as flame lift off and blow out, often occur on the ms timescale, and can be sampled frequently during their occurrence, such that flow properties are nearly unchanged within a grid element between consecutive frames. The overarching criterion is that the sampling rate exceeds the rate of change of flow properties to a significant degree. The tool that

\[
\Delta T = \min \left[\sqrt{(T_1 - T_1)^2 + (T_2 - T_2)^2}, \sqrt{(T_1 - T_1)^2 + (T_2 - T_1)^2} \right]
\]

(3.19)
The major advantages of using the POD method are three-fold: 1) regularization is not needed since the extracted eigenfunctions are smooth; 2) better reconstructions can be obtained since the scale of the optimization problem is reduced and also the control of the bounds is improved; and 3) the application of POD also improves the noise-immunity of the tomographic inversion, as discussed in Ref. [305].

3.3. Experimental demonstration and applications

3.3.1. Wavelength-swept lasers

Theoretically, any lasers with sufficiently narrow line-width for gas sensing can be used for absorption tomography as long as it can be wavelength-tuned to cover a good number of absorption features of the target flow species. However, for certain reactive flows, such as turbulent flames, a high temporal resolution is necessary to freeze the flow and track transient phenomena. Thus, wavelength-swept lasers with high tuning agility are desirable for these applications. Rapid wavelength tuning can be realized by either extra- or intra-cavity filtering, depending on where the wavelength selection takes place. In the former case, the wavelength-selective element, e.g. a dispersing fiber, is positioned outside of the cavity and wavelength sweeping takes place after broadband laser radiation is generated. In the other case, the wavelength-selective element is contained inside the laser cavity so that only a certain wavelength is amplified during the lasing process. The wavelength agile lasers that have been successfully used, or have the potential to be used, for DAS-based nonlinear tomography are illustrated in Fig. 24 and are briefly introduced in the following sections.

Panel (a) of Fig. 24 shows a standard fiber-ring swept wavelength laser, which contains a fiber Fabry-Perot tunable filter (FFP-TF) within the ring cavity. The gain medium is a semiconductor optical amplifier (SOA) sandwiched between two optical isolators to suppress reflections from the optical surfaces and to guarantee a unidirectional propagation of the photons. Through amplified spontaneous emission, the SOA starts to emit broadband radiation which is then spectrally filtered by the FFP-TF. The filtered radiation will then be amplified through stimulated emission (SE) after multiple round-trips within the cavity, until the active medium is saturated. The output wavelength can be tuned via the waveform driver, which tunes the FFP-TF to sweep through the gain window of the SOA. The sweeping rate of the laser is limited by the rate of slow lasing processes, i.e. ASE [313]. To overcome this limitation, a new design of the ring cavity was recently proposed, as illustrated in Panel (b). The new design incorporates a delay line, so called dispersion compensation module (DCM), within the cavity so that some photons remain in the cavity to act as seeds for the SE processes of following sweeps. The driving frequency of the filter must match the delay time of the stored sweep in the delay line so that the correct seeding wavelengths pass the filter at the correct time to be amplified by the SE processes. This conceptually simple modification greatly reduces the lasing buildup time and thus increases the achievable sweeping rate dramatically. Theoretically, the sweeping rate of the laser is only limited by the SOA carrier relaxation time, which is typically below a nanosecond. In addition, the spectral range of the laser is limited by the gain window of the SOA, which usually spans tens of nanometers. Since the frequency or spectral information is transformed into temporal information through wavelength chirping, the device is named Fourier domain mode locking (FDML) laser [283–285,314].

Supercontinuum radiation is another type of spatially coherent broad bandwidth radiation, which can be rapidly wavelength tuned outside of the laser cavity as depicted in Panel (c). Octave spanning supercontinuum radiation is generated by pumping short (ps or shorter) pulses into a photonic crystal fiber [25] where nonlinear effects such as self-phase modulation, stimulated Raman scattering, and four-wave mixing lead to massive spectral broadening [265,315]. The color spectrum of the ensuing broad bandwidth
Tagged Pulses is temporally dispersed via passage through a long dispersive fiber. A spectrum is then recorded for each pulse simply by recording the time resolved signal on a high bandwidth photo-detector and sweep rates of up to 1 nm per ns are possible, beyond which the spectral resolution becomes limited by the Heisenberg uncertainty principle [265]. Detailed implementations of this ultra-fast wavelength-sweeping technique are covered in [22,24,264].

3.3.2. Experimental applications

High-speed tomographic imaging has found a range of applications in the combustion area, e.g. the development of next-generation engines such as the Homogeneous Charge Compression Ignition and scramjet engines. The DAS-based nonlinear tomography, on the other hand, has so far been experimentally validated with a two-zone problem [316], and demonstrated on a Hencken burner [119] and a gas turbine engine [239].

Here we summarize the most recent application of DAS-based nonlinear tomography for flow measurements at the exhaust plane of the augmenter-equipped J85-GE-5 gas turbine engine as an example [239]. The tomographic sensor consisted of three synchronized FDML lasers covering different regions in the near-infrared spectrum. The outputs from the lasers were combined and split into 32 beams using an optical multiplexer. A total of 30 laser beams were used to probe the ROI, with 15 arranged horizontally and 15 vertically as shown in Panel (a) of Fig. 25. The remaining two beams were monitored to provide references for the laser intensity and wavelength scan, respectively. The probing beams were installed on a custom-built aluminum frame as shown in Panel (b) of Fig. 25, delivered by single-mode fibers and collected by photodetectors. Panel (c) depicts the location of the measurement plane in the exhaust and one example of the measured 2D distribution of temperature measured. The analog voltage signals from the photodetectors were digitized and stored for subsequent processing using the aforementioned tomographic algorithms. The measurements were taken at a repetition rate of 50 kHz and measured projection data used to recover temporally-resolved T and X distributions. Although only two orthogonal projections were used in this application, there is no limitation per se in the number of projections that can be accommodated by DAS-based nonlinear tomography. Both the spatial resolution and accuracy will be improved, as more projections are used. The reader is referred to Ref. [239] for more details.

4. Conclusions

Tomographic absorption spectroscopy (TAS) is evolving into a mature technique in studies of gas dynamics and reactive flows. It is capable of mapping major non-fluorescent flow species such as H₂O, CO₂ and hydrocarbons with high sensitivity and speed. Examples include the successful demonstration on multi-cylinder and single-cylinder automotive engines for hydrocarbon imaging with crank-angle resolved temporal resolution. This imaging capacity makes it a perfect complement to planar imaging techniques such as laser-induced fluorescence. The latter usually provide better temporal and spatial resolution compared to tomographic absorption methods.
however they are restricted to situations where optical access is abundant and to the detection of fluorescent species, which makes them impractical in many technical combustion environments. The field is likely to see enormous developments in the near future through recent progress in the technology of broadband sweeping lasers, detector technologies, advancing absorption spectroscopy modalities, and in the theory of nonlinear tomography, bringing new opportunities for TAS to be deployed for combustion diagnostics.

For example, the advent of high-repetition rate, octave-spanning supercontinuum sources makes the simultaneous imaging of multiple flame species possible. The establishment of nonlinear tomography enables the incorporation of multispectral information within a single tomographic inversion, something that is not possible with classical tomography. Its realization also brings other advantages, such as an enhanced immunity against experimental noise. Furthermore nonlinear tomography enables a combination with wavelength modulation spectroscopy, which is calibration free and features high sensitivity.

The conceptual difference between classical absorption tomography (CAT) and absorption-based nonlinear tomography (ABNT) is not the number of absorption transitions that are used in a measurement but the way in which the measured data are processed. For example, multiple wavelengths can also be used in CAT but the sinograms are processed sequentially one by one to recover the distribution of absorption coefficients for a specific transition. In ABNT, on the other hand, the projection data for all transitions are assembled into one sinogram and processed simultaneously in a single tomographic inversion. In other words, the sinogram for nonlinear tomography has higher dimensionality (i.e. spectral dimensions) than the classical case. Furthermore, in ABNT the distributions of temperature, species, and pressure are reconstructed directly without prior recovery of the spatial profiles of absorption coefficients. We point out also that the ABNT is not inherently limited in spatial resolution; it achieves the same level of spatial resolution as CAT for the same number of projections but, as mentioned earlier, enjoys better noise immunity. However, in cases with extremely limited optical access, ABNT provides useful data already from only two orthogonal projections, which is not possible with CAT.

Fig. 26 summarizes all the tomographic absorption techniques that have been either numerically or experimentally demonstrated, in terms of optimal sampling schemes. The sampling in spatial, temporal, and harmonic dimensions is represented by three axes, respectively. The distance along each axis indicates the intensity of the sampling in the corresponding dimension. As can be seen, CAT is in the plane z-O-x and samples the spatial dimension intensively at only one specific absorption transition. With the aid of nonlinear tomography, the sampling in the other two dimensions can be accommodated in the inversion process. For example, DAS-based nonlinear tomography can effectively take advantage of the spectral sampling and CFVMS-based nonlinear tomography further extends the tomographic sampling into the harmonic domain, using the wavelength modulation method.

To summarize, this paper has reviewed the definition, mathematical formulation, inversion algorithms, and experimental demonstrations as well as applications of both CAT and ABNT for practical flow tomography. Tomographic absorption spectroscopy is complementary to planar imaging techniques and has been experimentally demonstrated with minimal optical access for engine measurements. Recent progress in ABNT is set to extend the applicability of CAT to more difficult combustion scenarios, such as coal-fired power plant boilers filled with flying ashes and in-flight engine monitoring in the presence of severe vibration, etc. We note though, that ABNT is still in its early days and work has so far been mostly theoretical in nature. Important topics such as spatial resolution and sensitivity offer scope for future numerical and experimental investigation. However, the many potential advantages of the technique hold great promise for the future and we hope that this review serves as a pointer into new directions along which the field will develop. Full scale experimental demonstrations and practical applications are bound to follow in the near future. In addition, the theory of nonlinear tomography is a new mathematical approach for data processing quite generally, which can potentially be applied to other tomographic areas, such as ultrasonic tomography [317], electrical resistance tomography [318], electrical impedance tomography [26], and interferometric tomography [319]. Finally, we point out again that tomographic absorption spectroscopy quite generally, whether linear or not, is not limited to reconstructions in 2 dimensions. There are interesting new developments in so called imaging Fourier transform spectroscopy [320] which may enable volumetric absorption tomography in the future and proof of concept numerical studies are being conducted to explore the viability of this concept [108].

Acknowledgements

This work was funded by the European Commission under Grant No. ASHTCSC 330840 and also the Chinese Government ‘Thousand Youth Talent Program’. Clemens F. Kaminski also wishes to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding (Grant EP/L015889/1).

References

[112] Liu C, Xu L, Cao Z, Yang Y. Fan-beam TDLAS tomography for gas concentration distribution with limited data. Imaging systems and techniques (IST); 2012.

Anink NB, Suntz R, Bockhorn H. Tomographic reconstruction of 2D-Oh-

Lv L, Tan J, Hu Y. Numerical and experimental investigation of computed

Uchiyama H, Nakajima M, Yuta S. Measurement of flame temperature distribu-

Horton BR, Thul DJ, Michaelis D, Roy M, Meyer TR, Gold JR. Single-shot, volumetri-

Elingsa GESF, Wienneke B, Oudheusden BW. Assessment of Tomo-PIV for three-

Els D, Clemens NT. Simultaneous high-speed 3D flame front detection and

29.

dimensional visualization of highly transient fuel sprays by microsecond quanti-

Wang J. Ultrafast X-ray imaging of fuel sprays. Ninth international conference on
synrotron radiation instrumentation; 2007.

Küstner B, Berrcoul E, Alad M. Quantitative 3D scattering of media

Williams RA, Beck MS. Process tomography : principles, techniques and appli-

Chen F, Goulard R. Retrieval of arbitrary concentration and temperature fields

Kawazoe H, Whitelaw J. Computer tomography of infra-red absorption and its

Guha A, Schoegl I. Tomographic imaging of

computers. Int J Multiphas

water vapor concentration and temperature distributions of combustion zones

Terzija N, McCann H. Wavelet-based image reconstruction for hard-field

Busa KM, Ellison EN, McGovern BJ, McDaniel JC, Diskin GS, DePoo MJ, Capriotti DP, Gaffney RL. Measurements on NASA langley durable combustor rig by TDLAT: preliminary results. 51st AIAA aerospace sciences meeting including the

Mohamad EJ, Rahim RA, Ibrahim S, Sulaiman S, Manaf MS. Flame imaging using

39.

Rahim RA, Pang JF, Chan KS. Optical tomography sensor configuration using

Zhang F, Fujiihara T, Tomokura K, Kioke-

diode laser tomography for arcjet plume

Zhang F, Fujiihara T, Tomokura K, Miasaka
T, Harada J. Determination of
parameters in arcjet plume by tomographic reconstruction. T Jpn Soc Aeronaut

Kawazoe H, Whitelaw J. Computer tomography of infra-red absorption and its
application to internal combustion engines. In: 10th international symposium on
apPLICATION OF LASER TECHNIQUES TO FLUID MECHANICS; 2000.

Guha A, Schoegl I. Simulation of 2D tomographic TDLAS using algebraic recon-
sition and Tikhonov regularization. 8th US national combus-
tion meeting; 2013.

Li N, Weng C. Modified adaptive algebraic tomographic reconstruction of gas
distribution from incomplete projection by a two-wavelength absorption

Harl A, Mettenkorf K, Song B, Plaut U. 2D tomographic reconstruction of
trace gas distributions from long path DOAS measurements: general approach,

Harl A, Song B. 2D reconstruction of atmospheric concentration peaks
from horizontal long path DOAS tomographic measurements: parameterisation and geometry within a discrete approach. Atmos Chem Phys 2006;6(3):847–

61.

Song J, Hong Y, Wang G, Pan H. Algebraic tomographic reconstruction of two-
dimensional gas temperature based on tunable diode laser absorption spectro-

Liu C, Xu L, Cao Z. Measurement of axisymmetric temperature distributions

Li N, Weng C. Modified adaptive algebraic tomographic reconstruction of gas
distribution from incomplete projection by a two-wavelength absorption

Klotzkin DJ. Introduction to semiconductor lasers for optical communications. New York, USA: Springer; 2014.

Klotzkin DJ. Introduction to semiconductor lasers for optical communications. New York, USA: Springer; 2014.

Klotzkin DJ. Introduction to semiconductor lasers for optical communications. New York, USA: Springer; 2014.

