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Abstract
Localization microscopy software generally contains three elements: a localization algorithm
to determine fluorophore positions on a specimen, a quality control method to exclude
imprecise localizations, and a visualization technique to reconstruct an image of the specimen.
Such algorithms may be designed for either sparse or partially overlapping (dense)
fluorescence image data, and making a suitable choice of software depends on whether an
experiment calls for simplicity and resolution (favouring sparse methods), or for rapid data
acquisition and time resolution (requiring dense methods). We discuss the factors involved in
this choice. We provide a full set of MATLAB routines as a guide to localization image
processing, and demonstrate the usefulness of image simulations as a guide to the potential
artefacts that can arise when processing over-dense experimental fluorescence images with a
sparse localization algorithm.

Keywords: localization microscopy, super-resolution, image processing, software

S Online supplementary data available from stacks.iop.org/JOpt/15/094012/mmedia
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1. Introduction

Many of the most striking observations in recent biological
research have been made possible by super-resolution
microscopy techniques. These techniques can image fluo-
rescently labelled biological structures with near to electron
microscope resolution; and as light-based methods they
are compatible with physiological (i.e. wet) conditions.
Localization microscopy is one of the most important types of
super-resolution imaging: it is the class of methods including
PALM, (d)STORM, and GSDIM which are based on the
precise determination of fluorophore positions on a specimen,
followed by computational reconstruction of a super-resolved
image [1–4]. These techniques are ideally suited to deter-
mining the morphology of small intracellular structures such
as the actin cytoskeleton and other filamentous assemblies
like the highly packaged von Willebrand Factor stored within

Weibel–Palade bodies [5], as well as protein aggregates like
beta Amyloid fibrils associated with Alzheimer’s disease [6].

A general outline of localization microscopy is as
follows. A specimen is labelled using photoswitchable
fluorophores. Using a conventional fluorescence microscope
and correct conditions (laser intensity, label density, buffer
solution, camera integration time) a series of images of
the specimen can be captured which contain a ‘blinking’
fluorescence signal. In these images, sparse or sometimes
partially overlapping spots of fluorescence are obtained
from random subsets of the fluorophores on the specimen.
These results are processed computationally, as illustrated
in figure 1. In a simple ‘sparse’ localization algorithm, the
position of each fluorophore is inferred as corresponding
to the centre position of each spot of fluorescence, and
experimentally this can be determined by computational
fitting as precisely as 10–20 nm. Once the positions of

12040-8978/13/094012+07$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/2040-8978/15/9/094012
mailto:ejr36@cam.ac.uk
mailto:cfk23@cam.ac.uk
http://stacks.iop.org/JOpt/15/094012
http://stacks.iop.org/JOpt/15/094012/mmedia


J. Opt. 15 (2013) 094012 E J Rees et al

Figure 1. Image processing in localization microscopy. Spatially sparse fluorescence images are typically processed by a ‘segmentation
and Gaussian fitting’ algorithm, which identifies bright spots that potentially correspond to fluorophores and then determines the precise
position of each candidate by fitting a 2D Gaussian to the fluorescence signal. Candidates that are too dim, or imprecisely determined, are
rejected by a judging method. Precise, robust localizations are used to reconstruct the super-resolution image of the specimen by plotting the
density of localizations.

many fluorophores on the specimen have been determined,
the specimen can be visualized with high resolution using a
computational image reconstruction method, which visualizes
the localized fluorophore density [7, 8].

Overall, the difference between a conventional fluores-
cence and a localization microscope is that the former senses
the presence of a fluorophore by imaging a spread of photons
on a camera, while the latter determines the fluorophore
position as a localization—via an additional, computational
step that follows on from capturing the conventional image
data. Whereas a traditional fluorescence image of a single
molecule might comprise a few thousand photons distributed
over a diffraction-limited and relatively large point spread
function (PSF), the same measurement could be interpreted
as a single localization, with a much more tightly defined
position that corresponds to the centre position of the N
photons. Because the localization is determined with a
narrower response function, by a factor of about N−1/2, it
supports a finer resolution.

A fundamental aspect of localization microscopy is
that, in addition to the optical microscope itself, a major
element of the imaging system is software—for position
inference and subsequent reconstruction of the super-resolved
image. The role of software is simple to describe; however
there are many distinct implementations. In particular there
are choices related to background subtraction and fitting
algorithms [9–13], quality control (rejection of false-positive
localizations) and image reconstruction technique [7, 8].
This complexity has two consequences for experimentalists.
First, it means they need to be aware of the several issues
that can affect the quality of their super-resolved images.
Second, it raises the need for a general mathematical
description that is applicable to various implementations, so
that experiments can be treated as well-defined measurements
and compared on a sound basis. We have recently worked
on such a description [14], in order to study the resolution
of localization microscopy images. Our model describes
localization microscopy as (in mathematical terms) two steps:
firstly localization of fluorophore positions, and secondly
visualization of the structure based on these positions. The
resolution of final reconstructed image is found to be limited
by the finite error that affects localizations in step 1, and also
by the finite amount of smoothing that must be applied to

visualize them in step 2. In practice, localization microscopy
software includes a third function as well as these two steps:
it also includes quality control methods which aim to exclude
spurious or imprecise localizations, without excluding true
ones—the limitations of these quality control steps when
dealing with real experimental data and different localization
algorithms (e.g. for dense fluorescence data) are an interesting
area of current research.

In this paper we summarize the elements of image
processing in localization microscopy, as a complement for
experimental guides such as [15–17]. A key issue for software
is the localization bias that mars the fidelity of super-resolved
images when algorithms are applied to denser fluorescence
signals than they are able to address. We demonstrate this
important issue with simulated and experimental data and a
sparse algorithm; and we make available our set of MATLAB
scripts for image simulation, localization, visualization and
post-processing.

2. Methods

2.1. Image simulation

Simulated localization microscopy image data were prepared
as follows, based on an established method [18]. For a single
fluorophore simulation, the position of the fluorophore is
translated onto a simulated EMCCD grid. Using a Gaussian
approximation for the point spread function (PSF), the
proportion of the PSF that falls into each pixel on the EMCCD
is integrated and the expected number of photons collected
in each pixel is established by allocating this proportion
of its photon yield (many typical experimental yields are
tabulated [19]). Because photon arrival is a stochastic process,
this expected number of photons must then be replaced,
independently for each pixel, by a random number drawn
from a Poisson distribution with a mean equal to the
expected photon number. Finally, random camera readout
noise, typically drawn from a Gaussian distribution, is added
to each camera pixel. In the case of a multi-fluorophore
specimens, a random subset of fluorophores are chosen to be
‘active’ in each frame and their images are summed as for the
single fluorophore simulation, before finally adding camera
noise.
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Figure 2. Outline of image simulation. (a) A ‘testcard’ specimen is defined as a set of fluorophore positions, in this case crossing lines of
fluorophores at 16 nm separation (horizontal) and 23 nm (diagonal). A random subset of fluorophores (red) are set to be in the active
(bright) photoswitching state. The optical point spread function of each fluorophore is integrated over a simulated CCD grid and realistic
photon detections are assigned to each pixel (b), and then random camera noise is added to the image (c). A stack of such images are
simulated independently, to provide data for testing localization algorithms.

2.2. Experimental methods

HeLa cells were grown in RPMI 1640 without phenol
red (Gibco/Invitrogen), supplemented with 100 units ml−1

penicillin, 100 µg ml−1 streptomycin, 1 mM L-glutamine,
10% foetal calf serum (FCS), and plated in LabTek II
8-well chambered coverglass (Nunc). After 12–24 h, the
medium was replaced with medium without FCS and the
cells were incubated with unlabelled Aβ1–42 (BachemGmbh,
Weil am Rhein, Germany) for 1 h prior to fixing them
using 3.7% paraformaldehyde (Sigma, Germany) in PBS for
10 min. The fixed cells were washed three times with PBS
and permeabilized in PBS 0.5% v/v Triton X-100 (Sigma,
Germany) for 10 min. After three washing steps with PBS,
the cells were incubated with 5% BSA in PBS. In order
to stain the unlabelled Aβ1–42 indirect immunochemistry
was applied, i.e. cells were stained with a monoclonal
anti-β Amyloid antibody (6E10) (Covance, Leeds, UK) and
Alexa Fluor R© 647 goat anti-mouse IgG antibody (Invitrogen,
Paisley, UK), respectively, for 60 min. After each staining step
three washing steps were performed using PBS, 0.1% v/v
Tween 20 (Sigma, Germany).

For imaging, the specimens were immersed in a
‘switching buffer’ of phosphate-buffered saline (PBS),
containing 0.5 mg ml−1 glucose oxidase (Sigma, Germany),
40 µg ml−1 catalase (Roche), 10% w/v glucose and 100 mM
β-mercaptoethylamine (MEA) at pH 7.4–8.5. The dSTORM
method was employed [4] using an Olympus IX-71 inverted
microscope with an oil-immersion objective (PlanApo 60×,
NA 1.45, Olympus), and total internal reflection fluorescence
(TIRF) illumination. Laser illumination at 642 nm was applied
at 1–10 kW cm−2 on the specimen. Fluorescence images were
collected on a Andor iXon DV897 EMCCD camera. 20 000
frames of raw image data were captured with 10 ms exposure
time.

2.3. Image analysis and reconstruction of the super-resolved
image

Raw image stacks were analysed using a framewise
‘segmentation and Gaussian fitting’ algorithm designed for
localization microscopy with sparse image data. Each raw

image was segmented to find bright spots, by first of all
averaging with a 3 × 3 top-hat convolution filter to suppress
noise, and then identifying local maxima that are brighter
than a user-defined threshold as candidates for localization.
The fluorophore position of each candidate was determined
by iterative Gaussian fitting. Corresponding localization
parameters that were fitted simultaneously were retained for
quality control: the number of photons of signal associated
with each candidate, the fitted PSF width in both the x-
and y-directions, and an estimate of the background noise
level in the image. Candidates were rejected which exhibited
too-imprecise a localization precision, based on Thompson’s
equation [18] for localization precision1when N photons are
imaged with a PSF of variance s2 on a camera with pixel width
a and noise equal to b photons per pixel.

12
=

s2
+ a2/12

N
+

8πs4b2

a2N2 . (1)

Accepted localizations for which the localization
precision was better than a user-chosen value were visualized
in terms of fluorophore density by rastering them as a
‘histogram image’ [7, 10]. The MATLAB routines developed
for image simulation and processing are available from [20].

3. Image processing summary

The three general functions of localization microscopy
software are: (a) localization, (b) quality control and
(c) visualization, which are worth discussing in order. We
should note that localization microscopy software tools can
offer a choice of algorithms for each step, and it is important
to pick one that works effectively for the data in hand.

Localization algorithms may be designated for spatially
‘sparse’ or ‘dense’ fluorescence images. Sparse algorithms
perform fluorophore position inference based on the
assumption that the raw data contain non-overlapping spots,
so that bright spots can easily be found by ‘segmentation’
before applying an accurate fitting routine to determine the
precise positions of these candidates. A common further
assumption is that the frames of raw data are temporally
independent, so that localizations can be identified in parallel
for each frame without concern for artefacts that might be
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introduced by fluorescence images which persist across many
consecutive frames—this assumption can later be relaxed by
using post-processing to identify and address any such issues.
The properties of sparse algorithms are well established based
on their history in particle tracking [21]. Techniques based
on using a Gaussian fitting method to determine the centre
position of a spot are found to be efficient and accurate
when applied to sparse data, as well as being simple to
implement, and these are probably the most popular sparse
algorithms in current use [9, 10]. Because of their relative
simplicity, sparse localization algorithms benefit from simple
and robust metrics of quality. For example, the average
Thompson precision of sparse localizations can be evaluated
to estimate the resolution of the reconstructed super-resolution
image [14]. The disadvantage of sparse algorithms is that
regions of a specimen which actually exhibit overlapping
fluorescence images can lead to spuriously high or low
numbers of localizations, and thus to a reconstructed image
that contains incorrect and misleading features.

Dense algorithms identify fluorophore positions based on
raw image data that may contain spatially overlapping as well
as sparse PSFs. This enables super-resolution images to be
obtained from specimens with only a limited photoswitching
ratio; and this also leads to better time resolved data, because
fluorophore positions can be determined more rapidly [22].
There are several types of dense localization algorithm.
DAOSTORM is based on an established method in astronomy,
and iteratively fits multiple PSFs to regions of image data
which appear to contain overlapping signals [11]. This
method has the advantage of identifying separate parameters
such as the number of photons of signal and the PSF
width for each localization; however cross-talk between
the inferred parameters of adjacent localizations poses a
challenge to this evaluation. Compressed sensing can extract
fluorophore co-ordinates from potentially overlapping image
data, by applying a matrix inversion of a known forward
problem—that is to say by first calculating the expected
fluorescence image from each possible fluorophore position
(with a chosen granularity) and determining the fluorophore
positions that give rise to real signals in light of this complete
prior knowledge [12]. This method uses well established
signal processing methods, but is not well equipped to identify
key quality control parameters such as the PSF width of each
fluorophore image. The ‘Bayesian Localization Microscopy’
3B-analysis optimizes a model of fluorophore density to fit
the fluorescence measurements made in a whole series of
images [13]. This method is computationally demanding, but
aims to make use of the entire information content in a dense
image stack, allowing for reconstructions using fewer frames
of data and hence faster time resolution. The methods used by
these dense algorithms are outlined in supplementary figure 1
(available at stacks.iop.org/JOpt/15/094012/mmedia).

One basic drawback of dense algorithms is that they
are computationally slower: whereas sparse localization
is typically possible at real-time frame rates, dense
localization may slow down an experimental workflow. More
problematically, since they are more complex and designed
to process challenging data, their eventual misbehaviour at

low signal to noise ratios may be hard to spot. Further, the
potential cross-talk between the properties of localizations
made using overlapping image data means that applying
quality control criteria to these localizations is challenging.
Finally, the best localization precision, and hence the best
image resolution, tends to require sparse image data, and both
sparse or dense algorithms can achieve equally high precision
in this case [11, 12]. The advantage of dense algorithms is
that they still produce reasonable precision with dense image
data, which allows faster time resolution, down to at least
2 s [22]. However, if the aim of an experiment is to achieve
the best possible resolution, then the experiment should be
set up to measure sparse image data, in which case there is
little loss from using a sparse localization algorithm, and some
complexity can be avoided.

The purpose of a quality control algorithm is to
reject spurious or imprecise localizations that arise from
camera noise, fluorescence background, or weak fluorescence
signals. This step is usually combined with visualization
in a post-processing workflow that is separate from the
time-consuming localization algorithm. Following sparse
localization algorithms, typical quality control criteria are:
candidate brightness, fitted PSF width (rejecting broad spots
excludes out of focus signals and aggregates), or residual
(rejecting candidates with a substantial square error between
the signal and the fitted PSF). In practice, an effective
method of quality control is to estimate the uncertainty
of each localization using equation (1) [18], and exclude
candidates less precise than a threshold value. This is
a highly effective method of quality control in practice,
since the localization precision is directly related to the
resolution of the reconstructed image [14]. Hence this
is recommended as a simple one-parameter method of
quality control. Quality control of localizations obtained
by dense localization algorithms may have to use more
complex measures of quality, since separate precisions for
each localization may not be determinable. Among the
dense algorithms, DAOSTORM seems best able to separate
information about each localization so that its precision can be
estimated using equation (1), enabling a simple quality control
method.

Visualization methods convert localized fluorophore
positions into an image that represents the fluorophore
density of the specimen. Baddeley proposed some optimized
image reconstruction techniques [7], based on identifying the
key visualization properties as: (a) linearity with specimen
fluorophore density, (b) structure preservation, (c) no loss
of resolution contained in the data, (d) communicating the
achieved resolution to the viewer, (e) non-introduction of
artefacts or implied resolution better than the real value, and
(f) robustness (i.e. a minimum of adjustable parameters).
The key challenge for an optimal visualization is therefore
that the localizations are sufficiently smoothed that they do
not imply a pointillist structure where there is none, and
simultaneously that it does not smooth the data so much
that real structures are blurred out and lost. Ideally, each
localization should be smoothed by an amount that depends
on its localization precision, as well as the local density
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Figure 3. Effect of fluorescence density on the results of a sparse localization algorithm (simulated). (a)–(c) Image stacks were simulated
from the testcard object in figure 2(a), with decreasing photoswitching ratios defined to give increasingly dense fluorescence (from left to
right). Localizations (d)–(f) and the corresponding super-resolution images (g)–(i) show that sparse fluorescence signals support a faithful
reconstruction of the specimen; however denser fluorescence leads first to mislocalizations (h) and then to complete loss of the true
structure (i). Note that in case (i) the denser horizontal line of fluorophores dominates and obscures the slightly sparser diagonal line near
the crossing point.

of observed localizations [14]. The ‘Gaussian rendering’
method is one good way to achieve this [7], as is its digital
equivalent the ‘jittered histogram’ [8]. The simple ‘histogram
visualization’ is often used in practice, and the fixed pixel size
of the reconstructed image corresponds to a homogeneous
degree of smoothing. Although not ideal for samples with
variable fluorophore density, this visualization is good when
the fluorescent parts of the specimen have a uniform labelling
density.

4. Effects of dense fluorescence data

The quality of a super-resolution image in localization
microscopy depends strongly on how the choices of
localization algorithm, quality control parameters, and
visualization method interact with each particular dataset
obtained from a specimen. This is illustrated in figure 3

using simulated image data produced from a ‘testcard’ object,
which in this case is a pair of crossing lines labelled
with fluorophores. Image processing for figures 3 and 4
was performed with a sparse algorithm as outlined in 2.3.
Localizations are both plotted directly and visualized as a
fluorophore density histogram reconstruction. We applied a
single-parameter method of quality control, by excluding
localizations with a precision worse than 40 nm estimated
using equation (1). With sparse image data, the reconstruction
is faithful to the structure. Moderately dense fluorescence
data lead to mislocalizations: overlapping point spread
functions are misinterpreted as localizations between the
true linear features. At high fluorescence density some
area of the true specimen are completely lost from the
reconstructed image, because the extensively overlapping
images produce mislocalizations which are rejected by the
quality control criteria (too-wide PSFs seem to correspond
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Figure 4. Effect of fluorescence density on experimental super-resolution images. Beta amyloid protein aggregates were imaged using the
dSTORM technique. The raw image data contained sparse fluorescence images (a), which were processed by a sparse localization algorithm
to produce a robust super-resolution image revealing amyloid fibrils (b)–(c). Dense experimental measurements were generated by summing
consecutive sets of 10 frames of raw image data, to emulate over-long exposure times. The dense fluorescence data (d) yielded a degraded
super-resolution image (e) with mislocalization artefacts similar to those seen in simulation (f). In this case the mislocalization damage was
not severe, and both reconstructions were better resolved than the conventional fluorescence image (g).

to poor localization precision). Figure 4 shows that similar
damage occurs to super-resolution images of Beta amyloid
fibrils when the observed fluorescence images are too dense.
The artefacts seen here are similar to those seen in simulation:
some mislocalization blurring is seen in the regions between
crossing fibrils, and some fainter areas are blotted out by
mislocalization with nearby dense areas. From the case
of these amyloid fibrils, it is clear that potential artefacts
of localization microscopy can be explored in advance by
simulation, and this approach can be very helpful when
interpreting super-resolution images.

5. Image processing software

The image processing and simulations for this paper were
all performed using MATLAB routines that we have
developed for localization microscopy, and which we make
available under the name rainSTORM [20]. These routines
can be used to perform the image processing element of
localization microscopy, and includes the resolution analysis
described in [14]. Additional scripts are included to perform:
image simulation for testbenching and validation; batch
processing of multiple files; fiducial marker tracking and
drift correction; chromatic offset correction; and molecular
trajectory imaging. Readers with some free time may like
to refer to other localization microscopy softwares, which
include: rapidSTORM [10], quickPALM [23], GraspJ [24],
DAOSTORM [11], 3D-DAOSTORM [25], Compressed
Sensing [12], 3B-Analysis [13], and Localizer [26].

6. Conclusions

This paper has reviewed the fundamental properties of image
processing software in localization microscopy. The choice of
sparse or dense localization algorithms has been discussed
in detail, together with a study into the kind of artefacts
seen when processing raw image data comprising denser
fluorescence than the algorithm was designed to handle.
Simulation is shown to provide a good qualitative guide to
how the super-resolved image of particular structures may be
degraded if the fluorescence data are denser than the ideal.
A full set of MATLAB tools for localization microscopy,
named rainSTORM, is provided as an aid for system
development. In the near future, localization microscopy
software seems likely to improve in several capabilities: (a) in
simultaneously achieving dense and precise localization, (b)
in offering simple quality control methods for handling dense
localization data, and (c) visualization methods that are
optimized for more sophisticated roles than reconstructing
2D fluorophore density—probably including 3D fluorophore
density and molecular trajectory graphs.
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