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Theoretical investigation of the photon efficiency
in frequency-domain fluorescence lifetime

imaging microscopy
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We investigate the photon efficiency of frequency-domain fluorescence lifetime imaging microscopy, using both
theoretical and Monte Carlo methods. Our analysis differs from previous work in that it incorporates the data
fitting process used in real experiments, allows for the arbitrary choice of excitation and gain waveforms, and
calculates lifetimes as well as associated F-values from higher harmonics in the data. Using our analysis, we
found different photon efficiencies to those previously reported and were able to propose optimal excitation and
gain waveforms. Additionally, we suggest measurement protocols that lead to further improvement in photon
efficiency. We compare our results to other techniques for lifetime imaging and consider the implications of our
higher-harmonic analysis for multi-exponential lifetime determination. © 2008 Optical Society of America
OCIS codes: 000.5490, 170.2520, 170.3650, 180.2520.
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. INTRODUCTION
luorescence microscopy is extensively used in many re-
earch areas, particularly in the biological sciences. The
mission properties of a fluorophore reflect the local mo-
ecular environment in which it resides. Changes in, for
xample, pH, ion concentration, viscosity, temperature,
roximity to other fluorophores, and the presence of
uenchers can all affect the properties of the observed
uorescence, including changes in intensity, lifetime, po-

arization, and wavelength. One powerful method com-
only used in this context is fluorescence lifetime imag-

ng microscopy (FLIM) [1]. FLIM provides information on
hotophysical events that cannot be measured with
imple intensity measurements [2].

Several different FLIM systems are now commercially
vailable, operating in both the time domain and in the
requency domain. Time-domain techniques rely on using

pulsed excitation source followed by measurement of
he emission as a function of time. For point scanning de-
ices, time-correlated single-photon counting (TCSPC) is
ommonly used, where the arrival times of individual
hotons following each excitation pulse are recorded [3,4].
or widefield microscopy, time-gated imaging has been
mployed, in which a gated image intensifier is used to
easure the integrated fluorescence in consecutive time
indows following each excitation pulse [5]. In frequency-
omain FLIM (FD-FLIM) the excitation is temporally
odulated and the lifetime can be determined by measur-

ng the phase shift or demodulation of the detected fluo-
escence signal relative to the excitation signal. For wide-
eld microscopy a homodyne detection scheme is used to
etermine the phase shift and demodulation, where the
etector gain is modulated at the same frequency as the
xcitation and images are taken at a series of relative
hase offsets. By fitting a sinusoid to the modulated sig-
1084-7529/08/020452-11/$15.00 © 2
als, the phase shift and demodulation of the fluorescence
mission can be recovered. For detection, a multichannel
late (MCP) intensified CCD is often used with the gain
odulated by modulating the photocathode voltage [6,7].
The relative efficiency of these different methods for

ifetime determination is an important differentiating fac-
or. One way of estimating the accuracy is by using the so
alled F-value [8]. The F-value is described as the “nor-
alized relative RMS noise” and is calculated using Eq.

1), where � is the lifetime, �� is the standard deviation of
he lifetime, and N is the total number of photons. Here
� /� is the relative RMS noise of the lifetime measure-
ent, which is normalized by the relative RMS noise of

he shot-noise-limited intensity measurement, �N /N.

F =
�N��

�
. �1�

The optimal theoretically achievable F-value is 1.
igher F-values indicate poorer performance. The
-value squared represents the relative number of pho-

ons required for a given measurement accuracy com-
ared to the shot-noise limit. The F-value is hence a valu-
ble tool for comparing the performance of different
maging techniques or different modes of operation within
he same technique.

The F-value has been investigated in the literature for
ime-domain methods [9–11] and frequency-domain meth-
ds [12,13]. With TCSPC, F-values very close to 1.0 are
btained [11]. For time-gated systems with parallel acqui-
ition, the best achievable F-value depends on the num-
er of gates used. Two-, four-, and eight-gate configura-
ions have been found to have minimum F-values of 1.7,
.3, and 1.23, respectively [9]. In the frequency-domain
ork, different excitation and gain waveforms were inves-
008 Optical Society of America
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igated for both the case of lock-in detection and homo-
yne detection using an image intensifier. Better F-values
ere obtained for lock-in detection, though this is still a
eveloping technology for widefield microscopy measure-
ents [14], and so we consider only the image intensifier

ase. Using an image intensifier the best reported F-value
as 7.4 for sinusoidal excitation with sinusoidal gain, and
.1 for Dirac excitation with sinusoidal gain [12].
The excellent paper by Phillip and Carlsson [12] pro-

ides a good insight into the F-values obtainable with FD-
LIM. However, we see an opportunity to extend their
ork in several ways. First, the method with which
-values for FD-FLIM were calculated in [12] does not

ully reflect the experimental protocol that is commonly
sed today. In actuality, the homodyne detection scheme

s realized by taking measurements at a series of different
hase shifts between excitation and gain waveforms, typi-
ally between 6 and 12 [6]. A sinusoid is fitted to this data,
rom which the lifetime can then be extracted. In [12] the
ata fitting procedure was simplified by taking two mea-
urements at different phase angles and a third measure-
ent with the modulation switched off. Second, the abil-

ty of FD-FLIM to analyze lifetimes from higher
armonics in the data was not assessed. Finally, the exci-
ation and gain profiles could not be varied arbitrarily
modulation depth, harmonic content, etc.).

In this work we develop a general statistical framework
or calculation of F-values for FD-FLIM with an image in-
ensifier that incorporates the commonly used data fitting
rocess. By expressing the waveforms as a Fourier series,
he method allows for the choice of arbitrary gain and ex-
itation waveforms with an arbitrary number of phase
teps. It also allows the investigation of lifetimes evalu-
ted from higher-harmonic components. Monte Carlo
imulations were performed in order to back up the theo-
etical findings. The results show that F-values achiev-
ble with FD-FLIM depend heavily on the imaging pa-
ameters used. Based on the findings, we suggest optimal
xcitation and gain waveforms, as well as innovative ex-

Fig. 1. Schematic showing the processes
erimental and data fitting procedures that further im-
rove the fidelity of FD-FLIM measurements, and con-
ider the potential of higher-harmonic lifetime analysis.

. OVERVIEW OF THEORETICAL
ALCULATIONS
e begin by treating photon generation as a random Pois-

onian process. Combined with knowledge of the excita-
ion waveform and assuming a single-exponential fluores-
ence decay, the probability density function (PDF) for
hoton emission as a function of time, q�t�, can be calcu-
ated. Knowledge of the PDF and the detection waveform
an then be used to find the expected value and standard
eviation of the measured signal for each relative phase
ffset. By knowing the way in which the data fitting pro-
ess combines the signals from each relative phase offset
easurement, the expected value and standard deviation

f each of the fitting parameters can be found. Finally, by
sing the relationship between phase or modulation life-
imes and the fitted parameters, the expected value and
tandard deviation of either the phase or modulation life-
ime can be calculated. This process is demonstrated
chematically in Fig. 1.

Once the expectation and standard deviation of the life-
ime have been calculated, we can work out the F-value
sing Eq. (1). Calculations are performed for both Dirac
xcitation and multiharmonic sinusoidal excitation with a
ultiharmonic sinusoidal gain waveform. Using Fourier

eries allows us to express any arbitrary excitation wave-
orm.

. FLUORESCENCE MODEL
n order to make calculations easier, we adopt dimension-
ess variables, as introduced by Philip and Carlsson [12]:

d in calculating an F-value for FD-FLIM.
involve
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t =
2�

T
t*, � =

2�

T
�*, �2�

here t* is time in seconds, �* is the fluorescence lifetime
n seconds, and T is the time period of the illuminating
ight; T is related to the angular frequency of the illumi-
ating light, �, by the relationship T=2� /�.
Using this notation, we describe the fluorescence

aused by a Dirac light pulse at time t=0 as

f�t� =
1

�
exp�−

t

�
�, t � 0, �3�

here f�t� is normalized so that its integral over time
reater than zero is equal to one.

When we excite with modulated illumination, the fluo-
escence observed will be a convolution between the illu-
ination waveform, e�t�, and the fluorescence response to
delta function, f�t�. Because the fluorescence light is

eak, we can think of it as a series of photons rather than
continuous flow. The convolution e�t� � f�t� will then be

roportional to the PDF for photon emission, which will
orm the basis of our analysis.

. PHOTON EMISSION PROBABILITY
ENSITY FUNCTION, q„t…

. Multiharmonic Sinusoidal Excitation
he excitation signal is described by a sum of sine waves

e�t� =

1 + �
j=1

J

mex,j sin�jt�

2�
, �4�

here j represents the harmonic, J represents the total
umber of harmonics, and mex,j represents the modula-
ion depth of the jth harmonic.

Taking the convolution of e�t� and f�t� and rearranging
sing standard trigonometric identities gives the photon
DF, q�t�,

2�q�t� = 1 + �
j=1

J mex,j

�1 + �j��2�1/2 �sin�jt − �j��,

here

�j = arctan�j��. �5�

In order to make the handling of the periodic functions
asier, we define the Fourier coefficients of q�t� as

qk =�
0

2�

exp�− ikt�q�t�dt.

e find

qk = �1 	 k = 0, �6�

qk =
mex,
k


�1 + �k��2��− k


k
 ��� i + k�

2 � � k � 0. �7�
. Dirac Excitation
he excitation signal is now described as a series of delta

unctions. We find the PDF for this case to be

q�t� =
exp�− t/��

� �1 − exp�− 2�/���
, 0 � t � 2�.

ote that the expression is normalized so that the inte-
ral of q�t� over one period is equal to 1.

The Fourier coefficients are then given by

qk =
1

1 + ik�
. �8�

. HOMODYNE DETECTION SCHEME
e wish to find the expectation and standard deviation of

he fluorescence signal at phase step i, corresponding to a
hase offset of 	i

g. We start by letting Xi be a random vari-
ble describing the fluorescence signal from a single exci-
ation photon at phase step i. It follows that for a mea-
urement with Np excitation photons per phase step, the
uorescence signal at phase step i will have a mean of
pE�Xi� and a variance of Np�Xi

2 . The measured fluores-
ence signal, yi, will be an estimate of NpXi.

For a periodic function, g�t�, with probability density
�t�, the expectation of that function can be written as

E�g�t�� =�
0

2�

g�t�p�t�dt.

Let us describe the gain of the intensifier as g�t�=a
�j=1

J bj sin�j�t−	i
g��. Here J is the number of harmonics to

e considered in the analysis. Then E�Xi� is given by

E�Xi� =�
0

2� �a + �
j=1

J

bj sin�j�t − 	i
g���q�t�dt. �9�

. Calculation of E„Xi…

sing Eq. (9), E�Xi� can be calculated for either the case of
irac or multiharmonic sinusoidal excitation simply by

nserting the correct form of the PDF, as calculated in
ection 4.
For multiharmonic sinusoidal excitation, using Eqs. (6)

nd (7) for qk, we find

E�Xi� = a + �
j=1

J � bjmex,j

2�1 + �j��2�1/2�cos�j	i
g − �j�. �10�

For Dirac excitation the calculation is similar except qk
s given by Eq. (8). We obtain

E�Xi� = a + �
j=1

J bj cos�j	i
g − 
j�

�1 + �j��2�1/2 , �11�

here


j = arctan�−
1

j�� . �12�
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. Calculation of �Xi

2

he standard deviation of Xi is equal to E�Xi
2�, as de-

cribed in the work by Philip and Carlsson [12]. Here
�Xi

2� is given by

E�Xi
2� =�

0

2� �a + �
j=1

J

bj sin�j�t − 	i
g���2

q�t�dt. �13�

For multiharmonic sinusoidal excitation we find

E�Xi
2� = q0a2 + 2a�

j=1

J � bjmex,j

2�1 + �j��2�1/2�cos�j	i
g − �j� ¯

+ ¯ �
j=1

J

�
k=1

J bjbk

2
R
exp�− �j − k�	i

gi�q�k−j� ¯

¯ − exp�− �j + k�	i
gi�q−�j+k��.

Using the expressions for qk [Eqs. (6) and (7)] gives
�Xi

2�.
For Dirac excitation a similar analysis is used, but with

k given by Eq. (8).

. DATA FITTING PROCESS
n order to obtain lifetime information, FD-FLIM mea-
urements are taken at a series of different relative phase
ffsets between the illumination and the gain waveforms.
he signal as a function of relative phase shift is periodic,
s can be seen from Eqs. (10) and (11). Lifetime informa-
ion is extracted by fitting a series of sinusoids to this
ata and determining the phase shift and demodulation.
ecause we wish to analyze lifetimes from several har-
onic components of the signal, we fit a function of the

orm

yi = a1 + �
j=1

H

a2
j cos�j	i

g − a3
j �. �14�

The modulation and phase shift for the jth harmonic
omponent are then given respectively by

	spl
j = a3

j , mspl
j =

a2
j

a1
. �15�

Since we need to fit to data in a large number of pixels,
n efficient fitting algorithm is required. This can be
chieved by linearizing Eq. (14), such that only a matrix
ultiplication is required to perform the fitting in each

ixel. An alternative to this is to use a Fourier sine esti-
ator, which involves taking the Fourier transform of the

ata [15]. The Fourier estimator works only in the case of
quidistant phase shifts over a 2 � range and is in this
ase identical to the linearized sine estimator [16]. We
hoose to use the linearized sine estimator approach, as it
akes visualization of the fitting process clearer and also

llows uneven phase steps to be analyzed.

. Linear Least-Squares Fitting Procedure
e write our fitting function as a linear function in the

ariables x1,j=cos�j	g� and x2,j=sin�j	g� by expanding the
i i i i
osine term in Eq. (14). Defining the parameters �1=a1,

2
j =a2

j cos�a3
j �, and �3

j =a2
j sin�a3

j �, the linearized fitting
unction can be written as

yi = �1 + �
j=1

H

��2
j xi

1,j + �3
j xi

2,j�. �16�

he least-squares estimate of the fitting parameters, ��LS,
s given by [17]

��LS = 
�XTX�−1XT� y� , �17�

here

X = �
¯ x�1 ¯

¯ x�2 ¯

]

¯ x�N ¯

�, x� i = �1 xi
1,1 xi

2,1
¯ xi

1,H xi
2,H�.

The matrix X depends only on the phase steps used and
he number of harmonics fitted. For the case of evenly
paced phase steps the calculation is simplified, as
XTX�−1 is diagonal, and the least-squares estimate of the
tting parameters is given by

��LS =�
�1

�2
1

�3
1

]

�2
H

�3
H

� =�
1
N�

i=1

N

yi

2
N�

i=1

N

yi cos�	i
g�

2
N�

i=1

N

yi sin�	i
g�

]

2
N�

i=1

N

yi cos�H	i
g�

2
N�

i=1

N

yi sin�H	i
g�

� . �18�

We present the following analysis based on the as-
umption of evenly spaced phase steps. If the phase steps
re not even, then calculation of X is still straightforward,
ut �XTX�−1 will no longer be diagonal. The least-squares
stimate of each fitting parameter will still be a linear
ombination of the experimental measures, yi, and so the
nalysis methodology presented is still valid.

. Expectation and Standard Deviation of Fitting
arameters
o estimate the accuracy of the fitting parameters, we let
j, Vj, and W be random variables with the respective
eans �u

j , �v
j , and �w and standard deviations �u

j , �v
j , and

w, which are equivalent to the parameters �3
j , �2

j , and �1,
espectively. Since yi is an estimate of NpXi, from Eq. (18)
e can write Uj, Vj, and W as
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Uj =
2

N�
i=1

N

NpXi sin�j	i
g�,

Vj =
2

N�
i=1

N

NpXi cos�j	i
g�,

W =
1

N�
i=1

N

NpXi. �19�

For convenience we write NpXi as NpXi=�i+�iYi,
here �i is the mean and �i is the standard deviation of

he fluorescence signal for Np excitation photons in phase
tep i; Yi is a random variable with mean 0 and variance
. Here i can be any integer from 1 to N and indicates the
hase step number, and �i and �i are related to the al-
eady calculated E�Xi� and E�Xi

2� by the following equa-
ions:

�i = NpE�Xi�, �i
2 = NpE�Xi

2�, �20�

s described in Section 5.
Taking the expectation of Eq. (19), we can calculate

�Uj� as

E�Uj� =
2

N�
i=1

N


�i sin�j	i
g� + E��iYi sin�j	i

g���.

Since E�Yi�=0,

E�Uj� =
2

N�
i=1

N

�i sin�j	i
g�. �21�

A similar analysis gives Vj and W.
The standard deviation of Uj is calculated by first de-

ermining E�Uj2�. The standard deviation is then calcu-
ated from �Uj

2 =E�Uj2�−E�Uj�2.
Squaring Eq. (19) and then taking expectations yields

E�Uj2� =
4

N2E��
i=1

N

�
k=1

N

��i�k + �i�kYk + �k�iYi

+ �i�kYiYk�sin�j	i
g�sin�j	i

g�� .

Now, since measurements in phase steps i and k �i ,k
1. . .N� are independent, E�YiYk�=E�Yi�E�Yk�=0. Also
�Yi

2�=1 and E�Yi�=0, which gives

E�Uj2� = E�Uj�2 +
4

N2�
i=1

N

��i
2�sin2�j	i

g�. �22�

�Vj2�, E�W2�, E�UjVj�, E�UjW�, and E�VjW� are found in
he same way. Because E�Xi� and E�Xi

2� were already cal-
ulated in Section 5, �i and �i can be calculated from
q. (20).
. LIFETIME ANALYSIS
. Relationship between Lifetime and Fitting
arameters for Multiharmonic Sinusoidal Excitation
he phase lifetime is calculated from the phase shift in

he detected signal. On inspection of Eq. (10), we see that

j�p
j = tan�	spl

j �.

Including the definitions of the fitting parameters, we
nd

j�p
j =

�3
j

�2
j . �23�

The modulation lifetime is calculated from the demodu-
ation in the detected signal. From Eq. (10) we see that

�m
j = ��mgain

j mex
j

2mspl
j �2

− 1�1/2

.

Including the definitions of the fitting parameters, we
nd

j�m
j = ���1

2mgain
j 2mex

j 2

4��2
j 2 + �3

j 2� � − 1�1/2

. �24�

. Relationship between Lifetime and Fitting Parameters
or Dirac Excitation
or Dirac excitation a similar analysis yields

−
1

j�p
j =

�3
j

�2
j , �25�

j�m
j = ���1

2mgain
j 2

�2
j 2 + �3

j 2 � − 1�1/2

. �26�

. Expectation and Standard Deviation of Lifetimes for
ultiharmonic Sinusoidal Excitation
sing the random variables Uj and Vj introduced in Sec-

ion 6 and writing Uj=�U
j +�U

j YU
j and Vj=�V

j +�V
j YV

j , the
caled phase lifetime, �p

j , can be written as

j�p
j =

Uj

Vj =
�u

j + �u
j Yu

j

�v
j + �v

j Yv
j ,

here �U
j and �V

j are the means, �U
j and �V

j are the stan-
ard deviations, and YU

j and YV
j are random variables

ith mean zero and variance equal to one for harmonic j.
By calculating E��p

j � and E��p
j 2�, we are able to calculate

oth the mean and the standard deviation in the expected
alue of �p

j from �
�p
j

2 =E��p
j2�−E��p

j �2. In order to do this, we
ntroduce the notation 
u

j =�u
j /�u

j and 
v
j =�v

j /�v
j . Assum-

ng that 
u
j is much less than unity and using a series ex-

ansion, we find

Uj

Vj =
�u

j

�v
j �1 + 
u

j Yu
j − 
v

j Yv
j − 
u

j 
v
j Yu

j Yv
j + 
v

j 2Yv
j 2 + ¯ �.

Putting this expression into Eq. (23) and using the fact
hat E�Yj �=0, E�Yj �=0, and E�Yj 2�=1 gives
u v v
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E��p
j � =

1

j

�u
j

�v
j �1 − �uv

j 
u
j 
v

j + 
v
j 2 + ¯ �, �27�

here �uv
j =E�Yu

j Yv
j �= 
E�UjVj�−E�Uj�E�Vj�� /�U

j �V
j .

Squaring the expression for Uj /Vj and ignoring terms
f order greater than 2, we obtain an expression for the
xpectation of �p

j squared, E��p
j2�, and hence find the stan-

ard deviation of �p
j .

For the modulation lifetime we take a similar ap-
roach. Writing W=�W+�WYW, and with reference to Eq.
24), the scaled modulation lifetime �m

j can be written as

j�m
j = � ��w + �wYw�2 − zj��u

j + �u
j Yu

j �2 − zj��v
j + �v

j Yv
j �2

zj��u
j + �u

j Yu
j �2 + zj��v

j + �v
j Yv

j �2 �1/2

.

Here zj is a constant defined by the equation

zj =
4

mex
j 2mgain

j 2
. �28�

As for the phase lifetime case, we wish to calculate
��m

j � and E��m
j 2�. In order to do this, we introduce the no-

ation

�k
j2 = � �k

j2

�w
2 − zj�u

j2 − zj�v
j2� , �29�

�k
j = � 2�k

j �k
j

�w
2 − zj�u

j2 − zj�v
j2� , �30�

�k
j2 = � �k

j2

�u
j2 + �v

j2� , �31�

�k
j = � 2�k

j �k
j

�u
j2 + �v

j2� , �32�

here k can be u, v, or w.
Assuming �k

j , �k
j , �k

j , and �k
j to be small so that terms of

rder 3 and higher can be ignored and using series expan-
ions allows E��m

j � to be calculated in a way similar to
��p

j �.
A similar analysis is performed to calculate E��m

j 2� to
btain the variance of �m

j as in the phase lifetime case.

. Expectation and Standard Deviation of Lifetimes for
irac Excitation
he calculations for Dirac excitation are very similar to
he ones for multiharmonic sinusoidal excitation but start
ith Eqs. (25) and (26).

. F-VALUE CALCULATION
or the measurement scheme presented here we define
he F-value as in Eq. (33):

F =
�NNp��

�
. �33�
Here the term NNp represents the total number of pho-
ons used in the measurement (the number of phase steps
ultiplied by the number of photons per phase step mea-

urement). A program was written in IDL (Interactive
ata Language, Research Systems, Inc.) in order to use

he analytical expressions developed in this paper to cal-
ulate the F-value for a wide range of different scenarios.
he results of these calculations are presented below.

. MONTE CARLO SIMULATIONS
n order to back up the calculations presented in this pa-
er, Monte Carlo simulations of the FD-FLIM measure-
ents were also performed. The Monte Carlo simulations

erformed were similar to those described by [13]. A flow
iagram explaining the main steps of the Monte Carlo
imulation is shown in Fig. 2. For each Monte Carlo ex-
eriment the number of axis divisions, M, was chosen as
000 in order to keep the probability q�t��t below �0.01
nd hence reduce the chance of several photons occurring
er interval; Np was taken as 2500. Varying M or Np
round these values was found to have a negligible influ-
nce on the results. Each simulation was repeated 500
imes in order to produce reliable statistics.

In all cases, results from the Monte Carlo simulations
greed well with the theoretical calculations, as pre-
ented in the Results.

0. RESULTS
or N�4 we found that changing the number of phase
teps had very little impact on the calculated F-values.
e also found that shifting the phase of evenly distrib-

ted phase steps had no impact on the F-values. As such,
ll results for N�4 are general results for evenly distrib-
ted phase steps.
When evenly spaced phase steps are used and the

yquist sampling criterion is satisfied, the matrix XTX−1

s diagonal, and so fitting higher harmonics does not af-
ect the fit of lower harmonics. When uneven phase steps
re used, this is no longer true, and if higher harmonics
resent in the signal are not accounted for, then there can
e artifacts in the data due to aliasing. As such, the data
resented here use evenly spaced phase steps except
here explicitly stated.

. Sinusoidal Gain, NÐ4
or sinusoidal excitation and sinusoidal gain with modu-

ation depths of 1 (see Fig. 3), we found an optimum phase
-value of 9.0 at �=0.7 and an optimum modulation
-value of 8.7 at �=1.35. Further testing showed that de-
reasing the modulation depth of either the excitation or
ain waveform led to significantly poorer F-values (de-
reasing the excitation modulation depth to 0.5 increased
he minimum phase and modulation F-values to 18.0 and
7.8, respectively, while the same for the gain modulation
epth led to values of 15.6 and 15.4, respectively).
For Dirac excitation and sinusoidal gain with a modu-

ation depth of 1 (see Fig. 4), we found an optimum phase
-value of 4.28 for �=0.68 and an optimum modulation
-value of 3.9 at �=1.18. Decreasing the modulation
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ig. 3. Graph showing the F-value as a function of � for sinu-
oidal excitation (modulation depth of 1.0) with sinusoidal gain
modulation depth of 1.0) for phase and modulation lifetimes.
oth the theoretical results and Monte Carlo simulation data are
hown, which are in good agreement.
ig. 4. Graph showing the F-value as a function of � for Dirac
xcitation with sinusoidal gain (modulation depth of 1.0) for
hase and modulation lifetimes. Both the theoretical and Monte
arlo simulation data sets are shown, and the agreement is
xcellent.
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epth of the gain had a detrimental effect on the F-values
imilar to that for the sinusoidal excitation case.

. Sinusoidal Gain, N=3
or N=3 we found F-values for the case of sinusoidal gain
ifferent from those for N�4. We also found that shifting
he locations of three evenly distributed phase steps
aused the F-value to change. We found optimum
-values of 7.6 (�=0.68, 	g= 
35° ,155° ,275° �) and 7.8 (�
1.31, 	g= 
−5° ,115° ,235° �) for phase and modulation

ifetimes, respectively. The phase lifetime calculation is
n analogous case to the calculation for an image intensi-
er in [12], where a value of 7.4 at �=0.69 was found.
With Dirac excitation, similar results were found, with

ptimal phase and modulation F-values of 2.6 (�
0.58, 	g= 
61° ,181° ,301° �) and 2.4 (�=0.65, 	g


5° ,125° ,245° �), respectively. These data are shown in
ig. 5.

. Multiharmonic Analysis
y using a Fourier series representation, we can use any

unction for either the gain or excitation waveform. This
llows us to evaluate lifetimes and corresponding
-values for each higher harmonic present in both excita-

ion and gain waveforms.
To avoid aliasing problems, we found that using N�J

H lead to accurate lifetime estimates without aliasing
roblems. For analysis of a square wave we used the first
3 terms of the Fourier series representation and at-
empted to fit harmonics 1, 3, and 5. Hence �18 phase
teps were used. Using more phase steps had no impact
n the F-values, as was the case with sinusoidal gain.

For multiharmonic sinusoidal excitation, we found that
dding extra harmonics to either the excitation or gain
aveform had very little effect on the F-values calculated

rom the other harmonics (for either phase or modulation
ifetime). The important factor was the gain and excita-
ion modulation depth of the harmonic of interest, with
arger modulation depths giving better F-values.

We found that using waveforms such as square, trian-
ular, or saw-tooth for both excitation and gain gave poor
-values for harmonics higher than 1, as they have low

ig. 5. Graph of the F-value as a function of � for Dirac excita-
ion and sinusoidal excitation with sinusoidal gain (modulation
epth of 1.0) and three phase steps.
xcitation and gain modulation depths (1.27 versus 0.42
or the first and third harmonics, respectively, of a square
ave). This is demonstrated in Fig. 6 for square wave ex-

itation with square wave gain, where the third harmonic
the second nonzero harmonic for an odd square wave)
as minimum F-values of 57 and 57 compared to the
-values from the first harmonic of 6.3 and 6.0 for the
hase and modulation lifetimes, respectively. Since the
quare of the F-value is proportional to the number of
hotons required for a particular measurement accuracy,
his means that approximately 90 times more photons
ould be required for the third harmonic measurement to
ave the same error as the first harmonic measurement.
he F-values achieved for the first harmonic are better

han those for the case of sinusoidal excitation and gain
ue to the fact that the modulation depth of the first har-
onic component of a square wave is 1.27, compared to 1

or sinusoidal excitation.
For the case of Dirac excitation we found that lifetimes

valuated from higher harmonics could give reasonable
-values. This is seen in Fig. 7 for the case of a square
ain waveform, where harmonics 1, 3, and 5 (the first
hree nonzero harmonics) all give minimum F-values be-
ow 20. This is a promising result, as the gain profile of an
mage intensifier is approximately a square wave [18].

. Uneven Phase Step Positioning for Sinusoidal
xcitation
hen only single harmonic sinusoidal gain waveforms

re used, reliable lifetime information can still be ob-
ained with unevenly spaced phase steps, as aliasing is
ot a problem. We found that by careful placement of the
hase steps, lower F-values could be obtained. Two differ-
nt approaches were tried: first, placing a cluster of phase
teps around the “crossing points” (the triangles in Fig. 8)
nd second, placing a cluster of points around the “peaks
nd troughs” (the circles in Fig. 8).
We found that when points are clustered around the

crossing points,” the F-value for the phase lifetime was
owered compared to evenly distributed phase steps and

ig. 6. Graph showing the F-value calculated from the first and
hird harmonics as a function of � for square excitation with
quare gain for both phase and modulation lifetimes. The life-
ime calculated from the third harmonic has a large F-value, in-
icating poor measurement quality.
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he F-value for the modulation lifetime was raised. The
pposite was true for points clustered around the “peaks
nd troughs.” This was true for sinusoidal, square, and
irac excitation. Figure 9 shows the phase and modula-

ion lifetime F-values for Dirac excitation and sinusoidal
ain with uneven phase steps. Twelve phase steps were
sed, clustered around the “crossing points” for phase and
round the “peaks and troughs” for modulation lifetime
easurements, with varying amounts of spread between

he individual steps (5° or 10°; note that 30° with 12
hase steps corresponds to evenly spaced phase steps).
This analysis shows an optimum phase and modulation

-value of 2.9 and 2.0, respectively. This optimum oc-
urred at modulation frequencies of �=0.68 and �=0.65
or the 5° phase step spacing and is over a 25% improve-
ent compared to the evenly spaced phase step case. An

nalysis with sinusoidal excitation showed a similar im-
rovement in the optimum phase and modulation
-values to 6.4 and 7.1, respectively. The disadvantages of

his approach are that an approximate lifetime must be
nown roughly a priori, as otherwise the “peaks and
roughs” and “crossing points” cannot be located, and that

ig. 7. Graph showing the F-value as a function of � for Dirac
xcitation with square gain for phase and modulation lifetimes.
he F-value data from higher harmonics are much better than

or the case with square excitation.

ig. 8. Diagram explaining the location of “crossing points” and
peaks and troughs” for uneven phase step positioning.
he gain or excitation waveform must not contain mul-
iple harmonics (otherwise aliasing may lead to artifacts
n the lifetime analysis). Decreasing the separation of
hase steps too far results in a very narrow range of � in
hich good F-values are found for a given set of phase

tep locations. This is undesirable, as in reality an image
ill have a lifetime variation in it, and this is often pre-

isely what one aims to measure. Further investigation is
equired to fully develop the potential of using uneven
hase steps to obtain less noisy measurements.
All of these results are summarized in Fig. 10.

1. CONCLUSIONS
n conclusion, we have developed a theoretical frame-
ork, backed up by Monte Carlo simulations, which al-

ows calculation of F-values for FD-FLIM with arbitrary
xcitation and gain profiles. The analysis is more rigorous
han previous work, as it takes into account the data fit-
ing procedure used in actual experiments and allows for

ig. 10. Comparison of the optimum F-values calculated for dif-
erent operating parameters.

ig. 9. Graph showing the phase F-value as a function of � for
irac excitation with sinusoidal gain (modulation depths of 1.0).
he phase steps were clustered around the “crossing points” or
peaks and troughs” of the detected signal, with spreads of 5° and
0° shown for both phase and modulation lifetimes.
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he arbitrary choice of excitation and gain waveforms. Us-
ng the theoretical framework developed, we found
-values that were significantly different from previously
eported work and which changed markedly between dif-
erent imaging scenarios. Since measurement accuracy
nd collection time are very important parameters for
hoosing between different lifetime imaging techniques,
his is an important result. Previous work had shown FD-
LIM to have F-values higher than competing tech-
iques, such as time-gated imaging, but this work shows
hat with the correct setup the F-values achievable can
pproach similar values. For example, a typical time-
ated system with two gates has an optimum F-value of
.7, compared to the optimal case shown here of 2.0 for
irac excitation with sinusoidal gain and uneven phase

teps. Also, previous work showed optimal F-values for
irac excitation occurred as �→0, which in real experi-
ents is not accessible. In the results shown here, opti-
al F-values occur in the range �=0.5→1.5, which for a

ypical lifetime of 3.0 ns corresponds to a range of 26
80 MHz modulation frequency. This is readily achieved

ith current technologies [7,19]. Additionally, F-values
or time-domain techniques are for parallel acquisition.
ew technologies allowing parallel acquisition for FD-
LIM data [14] will increase the photon efficiency further.
The markedly different F-values obtained for different

maging scenarios shows the importance of system opti-
ization in order to achieve the best possible sensitivity.
enerally, we found that the best F-values are obtained
y having a high modulation depth on both the excitation
nd gain waveforms. As such, Dirac pulse excitation gave
y far the best F-values. The best gain waveform tested
or even phase steps was a square wave; however, ongoing
ork is investigating the effect of rectangular gain pro-
les with reduced duty cycles. If a pure sinusoid is used
s either the gain or excitation profile, then better
-values can be found by using only three phase steps.
owever, F-values can be further improved by using N
4 along with careful positioning of the phase step loca-

ions. In addition we showed that when both gain and ex-

ig. 11. Graph showing how the mean of phase and modulation
ifetimes can produce a lifetime measurement with an F-value
etter than that for either measurement alone. This is because
he two measurements are taken in parallel. The case shown is
irac excitation with square gain (compare to Fig. 7).
itation waveforms contain higher harmonics, a lifetime
nd associated F-value could be calculated for each higher
armonic present. For multiharmonic sinusoidal (e.g.,
quare wave) excitation, we found that the F-values for
igher harmonics were extremely high, indicating very
oisy measurements. However, for Dirac excitation the
-values for higher harmonics were more reasonable.
his suggests that for multiple frequency FLIM measure-
ents [18] a Dirac pulse would be a much better choice of

xcitation waveform than, say, a square wave. Interest-
ngly, we found that adding extra phase steps did not re-
uce the F-value as might be expected. This means extra
hase steps can be used to combat the problem of aliasing
ithout reducing the photon economy.
It should be noted that phase and modulation lifetimes

rom all harmonics are acquired in parallel. Initial inves-
igations show that performing a weighted fitting to all
hese data sets simultaneously can give even better
-values over a larger range of values of �, although this
alculation is limited to Monte Carlo experiments because
f its complexity. Figure 11 shows the Monte Carlo calcu-
ation for Dirac excitation with square gain, where the
-value of the mean lifetime, �mean=0.5��p+�m�, is calcu-

ated. In this case the mean lifetime shows a better
-value over a large range of values of �.
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