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We investigate the photon efficiency of frequency-domain fluorescence lifetime imaging microscopy, using both
theoretical and Monte Carlo methods. Our analysis differs from previous work in that it incorporates the data
fitting process used in real experiments, allows for the arbitrary choice of excitation and gain waveforms, and
calculates lifetimes as well as associated F-values from higher harmonics in the data. Using our analysis, we
found different photon efficiencies to those previously reported and were able to propose optimal excitation and
gain waveforms. Additionally, we suggest measurement protocols that lead to further improvement in photon
efficiency. We compare our results to other techniques for lifetime imaging and consider the implications of our
higher-harmonic analysis for multi-exponential lifetime determination. © 2008 Optical Society of America

OCIS codes: 000.5490, 170.2520, 170.3650, 180.2520.

1. INTRODUCTION

Fluorescence microscopy is extensively used in many re-
search areas, particularly in the biological sciences. The
emission properties of a fluorophore reflect the local mo-
lecular environment in which it resides. Changes in, for
example, pH, ion concentration, viscosity, temperature,
proximity to other fluorophores, and the presence of
quenchers can all affect the properties of the observed
fluorescence, including changes in intensity, lifetime, po-
larization, and wavelength. One powerful method com-
monly used in this context is fluorescence lifetime imag-
ing microscopy (FLIM) [1]. FLIM provides information on
photophysical events that cannot be measured with
simple intensity measurements [2].

Several different FLIM systems are now commercially
available, operating in both the time domain and in the
frequency domain. Time-domain techniques rely on using
a pulsed excitation source followed by measurement of
the emission as a function of time. For point scanning de-
vices, time-correlated single-photon counting (TCSPC) is
commonly used, where the arrival times of individual
photons following each excitation pulse are recorded [3,4].
For widefield microscopy, time-gated imaging has been
employed, in which a gated image intensifier is used to
measure the integrated fluorescence in consecutive time
windows following each excitation pulse [5]. In frequency-
domain FLIM (FD-FLIM) the excitation is temporally
modulated and the lifetime can be determined by measur-
ing the phase shift or demodulation of the detected fluo-
rescence signal relative to the excitation signal. For wide-
field microscopy a homodyne detection scheme is used to
determine the phase shift and demodulation, where the
detector gain is modulated at the same frequency as the
excitation and images are taken at a series of relative
phase offsets. By fitting a sinusoid to the modulated sig-
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nals, the phase shift and demodulation of the fluorescence
emission can be recovered. For detection, a multichannel
plate (MCP) intensified CCD is often used with the gain
modulated by modulating the photocathode voltage [6,7].

The relative efficiency of these different methods for
lifetime determination is an important differentiating fac-
tor. One way of estimating the accuracy is by using the so
called F-value [8]. The F-value is described as the “nor-
malized relative RMS noise” and is calculated using Eq.
(1), where 7is the lifetime, o, is the standard deviation of
the lifetime, and N is the total number of photons. Here
o,/7 is the relative RMS noise of the lifetime measure-
ment, which is normalized by the relative RMS noise of
the shot-noise-limited intensity measurement, VN/N.
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The optimal theoretically achievable F-value is 1.
Higher F-values indicate poorer performance. The
F-value squared represents the relative number of pho-
tons required for a given measurement accuracy com-
pared to the shot-noise limit. The F-value is hence a valu-
able tool for comparing the performance of different
imaging techniques or different modes of operation within
the same technique.

The F-value has been investigated in the literature for
time-domain methods [9—11] and frequency-domain meth-
ods [12,13]. With TCSPC, F-values very close to 1.0 are
obtained [11]. For time-gated systems with parallel acqui-
sition, the best achievable F-value depends on the num-
ber of gates used. Two-, four-, and eight-gate configura-
tions have been found to have minimum F-values of 1.7,
1.3, and 1.23, respectively [9]. In the frequency-domain
work, different excitation and gain waveforms were inves-
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Fig. 1.

tigated for both the case of lock-in detection and homo-
dyne detection using an image intensifier. Better F-values
were obtained for lock-in detection, though this is still a
developing technology for widefield microscopy measure-
ments [14], and so we consider only the image intensifier
case. Using an image intensifier the best reported F-value
was 7.4 for sinusoidal excitation with sinusoidal gain, and
2.1 for Dirac excitation with sinusoidal gain [12].

The excellent paper by Phillip and Carlsson [12] pro-
vides a good insight into the F-values obtainable with FD-
FLIM. However, we see an opportunity to extend their
work in several ways. First, the method with which
F-values for FD-FLIM were calculated in [12] does not
fully reflect the experimental protocol that is commonly
used today. In actuality, the homodyne detection scheme
is realized by taking measurements at a series of different
phase shifts between excitation and gain waveforms, typi-
cally between 6 and 12 [6]. A sinusoid is fitted to this data,
from which the lifetime can then be extracted. In [12] the
data fitting procedure was simplified by taking two mea-
surements at different phase angles and a third measure-
ment with the modulation switched off. Second, the abil-
ity of FD-FLIM to analyze lifetimes from higher
harmonics in the data was not assessed. Finally, the exci-
tation and gain profiles could not be varied arbitrarily
(modulation depth, harmonic content, etc.).

In this work we develop a general statistical framework
for calculation of F-values for FD-FLIM with an image in-
tensifier that incorporates the commonly used data fitting
process. By expressing the waveforms as a Fourier series,
the method allows for the choice of arbitrary gain and ex-
citation waveforms with an arbitrary number of phase
steps. It also allows the investigation of lifetimes evalu-
ated from higher-harmonic components. Monte Carlo
simulations were performed in order to back up the theo-
retical findings. The results show that F-values achiev-
able with FD-FLIM depend heavily on the imaging pa-
rameters used. Based on the findings, we suggest optimal
excitation and gain waveforms, as well as innovative ex-
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perimental and data fitting procedures that further im-
prove the fidelity of FD-FLIM measurements, and con-
sider the potential of higher-harmonic lifetime analysis.

2. OVERVIEW OF THEORETICAL
CALCULATIONS

We begin by treating photon generation as a random Pois-
sonian process. Combined with knowledge of the excita-
tion waveform and assuming a single-exponential fluores-
cence decay, the probability density function (PDF) for
photon emission as a function of time, ¢(¢), can be calcu-
lated. Knowledge of the PDF and the detection waveform
can then be used to find the expected value and standard
deviation of the measured signal for each relative phase
offset. By knowing the way in which the data fitting pro-
cess combines the signals from each relative phase offset
measurement, the expected value and standard deviation
of each of the fitting parameters can be found. Finally, by
using the relationship between phase or modulation life-
times and the fitted parameters, the expected value and
standard deviation of either the phase or modulation life-
time can be calculated. This process is demonstrated
schematically in Fig. 1.

Once the expectation and standard deviation of the life-
time have been calculated, we can work out the F-value
using Eq. (1). Calculations are performed for both Dirac
excitation and multiharmonic sinusoidal excitation with a
multiharmonic sinusoidal gain waveform. Using Fourier
series allows us to express any arbitrary excitation wave-
form.

3. FLUORESCENCE MODEL

In order to make calculations easier, we adopt dimension-
less variables, as introduced by Philip and Carlsson [12]:
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where ¢" is time in seconds, 7 is the fluorescence lifetime
in seconds, and 7 is the time period of the illuminating
light; T is related to the angular frequency of the illumi-
nating light, w, by the relationship 7=27/ w.

Using this notation, we describe the fluorescence
caused by a Dirac light pulse at time t=0 as

1 t
f(t)=—exp(——), t=0, (3)

where f(¢) is normalized so that its integral over time
greater than zero is equal to one.

When we excite with modulated illumination, the fluo-
rescence observed will be a convolution between the illu-
mination waveform, e(¢), and the fluorescence response to
a delta function, f(¢). Because the fluorescence light is
weak, we can think of it as a series of photons rather than
a continuous flow. The convolution e(t) ® f(¢) will then be
proportional to the PDF for photon emission, which will
form the basis of our analysis.

4. PHOTON EMISSION PROBABILITY
DENSITY FUNCTION, q(t)

A. Multiharmonic Sinusoidal Excitation
The excitation signal is described by a sum of sine waves

J
1+ E M, j sin(jt)

J=1

e(t) = Y- ,

(4)

where j represents the harmonic, J represents the total
number of harmonics, and m,, ; represents the modula-
tion depth of the jth harmonic.

Taking the convolution of e(¢) and f(¢) and rearranging
using standard trigonometric identities gives the photon
PDF, ¢(#),

J

2mq(t)=1+ 272 (sin(jt - «)),

My
p=t W
where

a; = arctan(j). 5)

In order to make the handling of the periodic functions
easier, we define the Fourier coefficients of ¢(¢) as

2
qr= f exp(—ikt)q(t)de.
0

We find
=11} k=0, (6)

My i) -k i+kt .
B W)\ 2 e
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B. Dirac Excitation
The excitation signal is now described as a series of delta
functions. We find the PDF for this case to be

exp(-t/7)
q(t) = s 0<t<2m.
7(1 - exp(- 27/7))

Note that the expression is normalized so that the inte-
gral of ¢(¢) over one period is equal to 1.
The Fourier coefficients are then given by

1
1+ikr

qr= (8)

5. HOMODYNE DETECTION SCHEME

We wish to find the expectation and standard deviation of
the fluorescence signal at phase step i, corresponding to a
phase offset of ¢¢. We start by letting X; be a random vari-
able describing the fluorescence signal from a single exci-
tation photon at phase step i. It follows that for a mea-
surement with N, excitation photons per phase step, the
fluorescence signal at phase step i will have a mean of
N,E(X;) and a variance of N, 0'2 The measured fluores-
cence signal, y;, will be an estlmate of N, X;.

For a periodic function, g(¢), with probability density

p(t), the expectation of that function can be written as

2
E(g(t))=f g(@)p(t)dt.

0

Let us describe the gain of the intensifier as g(t)=a
+2}-’;1b ; sin(j(¢— ¢?)). Here J is the number of harmonics to
be considered in the analysis. Then E(X)) is given by

2 J
EX)= f <a + > b;sinj(t - ﬁ)))q(t)dt. 9)
Jj=1

0

A. Calculation of E(X})
Using Eq. (9), E(X;) can be calculated for either the case of
Dirac or multiharmonic sinusoidal excitation simply by
inserting the correct form of the PDF, as calculated in
Section 4.

For multiharmonic sinusoidal excitation, using Eqs. (6)
and (7) for q;, we find

EX) = a+2( Mess )os(j@g—aj). (10)

2(1 (] )2)1/2

For Dirac excitation the calculation is similar except g,
is given by Eq. (8). We obtain

J b;cos(j ¢ - &)

EX)= “+§—<1+<m2>v2 , (11)
where
1
& = arctan| - JT . (12)
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B. Calculation of o-%,

The standard deviation of X; is equal to E(X?), as de-
scribed in the work by Philip and Carlsson [12]. Here
E(X?) is given by

2 J 2
EX?) =f (a + >, b; sin(j(t - qs;’))) q)de.  (13)
J=1

0

For multiharmonic sinusoidal excitation we find

d b'mex /
E(Xlz) = q0a2 + 2aJ=21 (m)COSO(ﬁ%y - aj) e
7 7 bb,
23 P bt
J=1 k=1

e exp(— (] + k)(ﬁ;’,l)q—(]+k)] .

Using the expressions for g, [Eqgs. (6) and (7)] gives
EX?).

For Dirac excitation a similar analysis is used, but with
qy, given by Eq. (8).

6. DATA FITTING PROCESS

In order to obtain lifetime information, FD-FLIM mea-
surements are taken at a series of different relative phase
offsets between the illumination and the gain waveforms.
The signal as a function of relative phase shift is periodic,
as can be seen from Egs. (10) and (11). Lifetime informa-
tion is extracted by fitting a series of sinusoids to this
data and determining the phase shift and demodulation.
Because we wish to analyze lifetimes from several har-
monic components of the signal, we fit a function of the
form

H
yi=a1+2a§ cos(jc/);g—a’é). (14)
j=1

The modulation and phase shift for the jth harmonic
component are then given respectively by

- d
mjspl=a_' (15)
1

d’épl = a{’ﬂ

Since we need to fit to data in a large number of pixels,
an efficient fitting algorithm is required. This can be
achieved by linearizing Eq. (14), such that only a matrix
multiplication is required to perform the fitting in each
pixel. An alternative to this is to use a Fourier sine esti-
mator, which involves taking the Fourier transform of the
data [15]. The Fourier estimator works only in the case of
equidistant phase shifts over a 2 7 range and is in this
case identical to the linearized sine estimator [16]. We
choose to use the linearized sine estimator approach, as it
makes visualization of the fitting process clearer and also
allows uneven phase steps to be analyzed.

A. Linear Least-Squares Fitting Procedure
We write our fitting function as a linear function in the
variables xil’] =cos(j¢f) and x?" =sin(j¢?) by expanding the
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cosine term in Eq. (14). Defining the parameters 6;=a;,
th=al, cos(a}), and Gh=a} sin(a}), the linearized fitting
function can be written as

H
yi= 01+ >, (Gl + G2, (16)

J=1

The least-squares estimate of the fitting parameters, 6;g,
is given by [17]

Ors =[X"X)7'X ]y, 17
where
X1
X= 3_62 ) , k=1 Pt xPt e kP k),
N

The matrix X depends only on the phase steps used and
the number of harmonics fitted. For the case of evenly
spaced phase steps the calculation is simplified, as
(XTX)~! is diagonal, and the least-squares estimate of the
fitting parameters is given by

N
1%/2 Yi
i1
N
A 2 yi cos(¢f)
1 =1
05 N
0 2y sin(¢)
Os=| - |= N (18)
o N
o ]%2 y; cos(H¢)
i-1

N
2> i sin(H¢h)
i=1

We present the following analysis based on the as-
sumption of evenly spaced phase steps. If the phase steps
are not even, then calculation of X is still straightforward,
but (X7X)~! will no longer be diagonal. The least-squares
estimate of each fitting parameter will still be a linear
combination of the experimental measures, y;, and so the
analysis methodology presented is still valid.

B. Expectation and Standard Deviation of Fitting
Parameters

To estimate the accuracy of the fitting parameters, we let
U’, VI, and W be random variables with the respective
means ), M{,, and u,, and standard deviations o, 0{), and
o, which are equivalent to the parameters ¢}, ¢}, and 6;,
respectively. Since y; is an estimate of N,X;, from Eq. (18)
we can write U7, V/, and W as
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) N
U= — > NX; sin(jf),
NS

9 N
Kf% N,X; cos(j¢f),

N

= N; NX;. (19)

For convenience we write N, X; as N,X;=u;+0;Y;,
where u; is the mean and o; is the standard deviation of
the fluorescence signal for N, excitation photons in phase
step i; Y; is a random variable with mean 0 and variance
1. Here i can be any integer from 1 to NV and indicates the
phase step number, and y; and o; are related to the al-
ready calculated E(X;) and E(X?) by the following equa-
tions:

pi=N,EX)), o? =N,E(X?), (20)

as described in Section 5.
Taking the expectation of Eq. (19), we can calculate
E(V) as

2 X
E() = ]—VE [1; sin(i¢f) + E(0;Y; sin(i¢))].
i=1

Since E(Y;)=0,

2 N
E(U) =2, i sin(ef). (21)
i=1

A similar analysis gives V7 and W.
The standard deviation of U¥ is calculated by first de-

termining E((ﬁ2). The standard deviation is then calcu-
lated from o%=E(UV") - E(UV)2.
Squaring Eq. (19) and then taking expectations yields

4 /NN
EU) = A—ﬂE<E > (wimty + oYy + p07Y;

i=1 k=1

+ oiakYiYk)sin(jqﬁf’)sin(jﬁ)> .

Now, since measurements in phase steps i and & (i,k
=1...N) are independent, E(Y;Y,)=E(Y;)E(Y;,)=0. Also
E(Y?)=1 and E(Y;)=0, which gives

N
E(U")=E(U) + E (07)sin®(j¢). (22)
i=1

E(VT"), E(W2), E(TVVF), E(TVW), and E(V/W) are found in
the same way. Because E(X;) and E(XL-Z) were already cal-
culated in Section 5, w; and o; can be calculated from
Eq. (20).
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7. LIFETIME ANALYSIS

A. Relationship between Lifetime and Fitting
Parameters for Multiharmonic Sinusoidal Excitation
The phase lifetime is calculated from the phase shift in
the detected signal. On inspection of Eq. (10), we see that

jT;; = tan(@pl).

Including the definitions of the fitting parameters, we
find
b
7 =—. 23
JTy i (23)
The modulation lifetime is calculated from the demodu-
lation in the detected signal. From Eq. (10) we see that

A m{gammjx 2 1/2
A | g S I
2m spl

Including the definitions of the fitting parameters, we

find
) 0 alnzm‘éxZ 1/2
j7 = B Maain Tex ) ) (24)
462 + 02)

B. Relationship between Lifetime and Fitting Parameters
for Dirac Excitation
For Dirac excitation a similar analysis yields

1 6
__,=_,’ 25
P 25

01 2 1/2
j7 = —g‘”” -1 . (26)
02 + 0,

C. Expectation and Standard Deviation of Lifetimes for
Multiharmonic Sinusoidal Excitation

Using the random variables {7 and V/ introduced in Sec-
tion 6 and writing [V = e+ oYy and VI =+ o, Y%, the

scaled phase lifetime, 75,, can be written as

v pcf+ojlfj
j7 = Tu” TuTu
Viidror

where w; and ), are the means, of; and &/, are the stan-
dard deviations, and Y%, and Y4, are random variables
with mean zero and variance equal to one for harmonic j.

By calculating E(r{,) and E(T;,Z), we are able to calculate
both the mean and the standard deviation in the expected
value of 1{, from oi,- =E(7§,2) —E(7}",)2. In order to do this, we
introduce the notation /=o' /u, and « =0l /). Assum-
ing that «/, is much less than unity and using a series ex-
pansion, we find

U o

—=—1+LY - LY -
Vi /w’

Putting this expression into Eq. (23) and using the fact
that E(Y?)=0, E(Y’)=0, and E(YJUZ)z 1 gives

MAYE 4 Y )
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14 o
E(7'L)=J—.E(1-PLUKLKQ+K1U +o), (27)

where p},, =E(Y,¥))=[E(U'V?) - E(U)E(V)]/ o0,

Squaring the expression for [¥/V/ and ignoring terms
of order greater than 2, we obtain an expression for the
expectation of 7; squared, £ (7';2), and hence find the stan-
dard deviation of 7.

For the modulation lifetime we take a similar ap-
proach. Writing W= uw+owYw, and with reference to Eq.
(24), the scaled modulation lifetime 7, can be written as

. ((Mw+awa)2—zf(M{L+ 0@)’-{4)2_2]'(%4_0{)%)2)1/2
= ‘

&4, + LY + 2 () + oY)
Here 2/ is a constant defined by the equation

) 4
2= T (28)
ex ""Ygain
As for the phase lifetime case, we wish to calculate
E(7,) and E(T’mQ). In order to do this, we introduce the no-

tation

5 7

ﬁ%: 9 ) o2 ] (29)
,uw—ZJ,LcL—ZJ,U:L

_ 24,07

ﬁ=(%), (30)
,LLw—ZJ,LC{t _ZJ%

) o

(%;=( " ) (31)
W, + i,
214, )

%=( 522), (32)
Wy + i

where k can be u, v, or w.

Assuming S}, v}, &,, and €}, to be small so that terms of
order 3 and higher can be ignored and using series expan-
sions allows E(H,'n) to be calculated in a way similar to
E(7)). |

A similar analysis is performed to calculate E(7"m2) to
obtain the variance of 1",',1 as in the phase lifetime case.

D. Expectation and Standard Deviation of Lifetimes for
Dirac Excitation

The calculations for Dirac excitation are very similar to
the ones for multiharmonic sinusoidal excitation but start
with Egs. (25) and (26).

8. F-VALUE CALCULATION

For the measurement scheme presented here we define
the F-value as in Eq. (33):

(33)
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Here the term NN, represents the total number of pho-
tons used in the measurement (the number of phase steps
multiplied by the number of photons per phase step mea-
surement). A program was written in IDL (Interactive
Data Language, Research Systems, Inc.) in order to use
the analytical expressions developed in this paper to cal-
culate the F-value for a wide range of different scenarios.
The results of these calculations are presented below.

9. MONTE CARLO SIMULATIONS

In order to back up the calculations presented in this pa-
per, Monte Carlo simulations of the FD-FLIM measure-
ments were also performed. The Monte Carlo simulations
performed were similar to those described by [13]. A flow
diagram explaining the main steps of the Monte Carlo
simulation is shown in Fig. 2. For each Monte Carlo ex-
periment the number of axis divisions, M, was chosen as
1000 in order to keep the probability g(¢)At below ~0.01
and hence reduce the chance of several photons occurring
per interval; N, was taken as 2500. Varying M or N,
around these values was found to have a negligible influ-
ence on the results. Each simulation was repeated 500
times in order to produce reliable statistics.

In all cases, results from the Monte Carlo simulations
agreed well with the theoretical calculations, as pre-
sented in the Results.

10. RESULTS

For N=4 we found that changing the number of phase
steps had very little impact on the calculated F-values.
We also found that shifting the phase of evenly distrib-
uted phase steps had no impact on the F-values. As such,
all results for N=4 are general results for evenly distrib-
uted phase steps.

When evenly spaced phase steps are used and the
Nyquist sampling criterion is satisfied, the matrix X7X"!
is diagonal, and so fitting higher harmonics does not af-
fect the fit of lower harmonics. When uneven phase steps
are used, this is no longer true, and if higher harmonics
present in the signal are not accounted for, then there can
be artifacts in the data due to aliasing. As such, the data
presented here use evenly spaced phase steps except
where explicitly stated.

A. Sinusoidal Gain, N=4

For sinusoidal excitation and sinusoidal gain with modu-
lation depths of 1 (see Fig. 3), we found an optimum phase
F-value of 9.0 at 7=0.7 and an optimum modulation
F-value of 8.7 at 7=1.35. Further testing showed that de-
creasing the modulation depth of either the excitation or
gain waveform led to significantly poorer F-values (de-
creasing the excitation modulation depth to 0.5 increased
the minimum phase and modulation F-values to 18.0 and
17.8, respectively, while the same for the gain modulation
depth led to values of 15.6 and 15.4, respectively).

For Dirac excitation and sinusoidal gain with a modu-
lation depth of 1 (see Fig. 4), we found an optimum phase
F-value of 4.28 for 7=0.68 and an optimum modulation
F-value of 3.9 at 7=1.18. Decreasing the modulation
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Fig. 2. Flow diagram showing the process followed by the Monte Carlo simulations.
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Fig. 3. Graph showing the F-value as a function of 7 for sinu-

soidal excitation (modulation depth of 1.0) with sinusoidal gain
(modulation depth of 1.0) for phase and modulation lifetimes.
Both the theoretical results and Monte Carlo simulation data are

shown, which are in good agreement.
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Fig. 4. Graph showing the F-value as a function of 7 for Dirac
excitation with sinusoidal gain (modulation depth of 1.0) for
phase and modulation lifetimes. Both the theoretical and Monte

data sets are shown, and the agreement is
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depth of the gain had a detrimental effect on the F-values
similar to that for the sinusoidal excitation case.

B. Sinusoidal Gain, N=3
For N=3 we found F-values for the case of sinusoidal gain
different from those for N=4. We also found that shifting
the locations of three evenly distributed phase steps
caused the F-value to change. We found optimum
F-values of 7.6 (7=0.68, ¢5=[35°,155°,275°]) and 7.8 (7
=1.31, ¢¥=[-5°,115°,235°]) for phase and modulation
lifetimes, respectively. The phase lifetime calculation is
an analogous case to the calculation for an image intensi-
fier in [12], where a value of 7.4 at 7=0.69 was found.
With Dirac excitation, similar results were found, with
optimal phase and modulation F-values of 2.6 (7
=0.58, ¢*=[61°,181°,301°]) and 2.4 (7=0.65, ¢°
=[5°,125°,245°]), respectively. These data are shown in
Fig. 5.

C. Multiharmonic Analysis

By using a Fourier series representation, we can use any
function for either the gain or excitation waveform. This
allows us to evaluate lifetimes and corresponding
F-values for each higher harmonic present in both excita-
tion and gain waveforms.

To avoid aliasing problems, we found that using N>J
+H lead to accurate lifetime estimates without aliasing
problems. For analysis of a square wave we used the first
13 terms of the Fourier series representation and at-
tempted to fit harmonics 1, 3, and 5. Hence >18 phase
steps were used. Using more phase steps had no impact
on the F-values, as was the case with sinusoidal gain.

For multiharmonic sinusoidal excitation, we found that
adding extra harmonics to either the excitation or gain
waveform had very little effect on the F-values calculated
from the other harmonics (for either phase or modulation
lifetime). The important factor was the gain and excita-
tion modulation depth of the harmonic of interest, with
larger modulation depths giving better F-values.

We found that using waveforms such as square, trian-
gular, or saw-tooth for both excitation and gain gave poor
F-values for harmonics higher than 1, as they have low
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Fig. 5. Graph of the F-value as a function of 7 for Dirac excita-
tion and sinusoidal excitation with sinusoidal gain (modulation
depth of 1.0) and three phase steps.
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Fig. 6. Graph showing the F-value calculated from the first and
third harmonics as a function of 7 for square excitation with
square gain for both phase and modulation lifetimes. The life-
time calculated from the third harmonic has a large F-value, in-
dicating poor measurement quality.

excitation and gain modulation depths (1.27 versus 0.42
for the first and third harmonics, respectively, of a square
wave). This is demonstrated in Fig. 6 for square wave ex-
citation with square wave gain, where the third harmonic
(the second nonzero harmonic for an odd square wave)
has minimum F-values of 57 and 57 compared to the
F-values from the first harmonic of 6.3 and 6.0 for the
phase and modulation lifetimes, respectively. Since the
square of the F-value is proportional to the number of
photons required for a particular measurement accuracy,
this means that approximately 90 times more photons
would be required for the third harmonic measurement to
have the same error as the first harmonic measurement.
The F-values achieved for the first harmonic are better
than those for the case of sinusoidal excitation and gain
due to the fact that the modulation depth of the first har-
monic component of a square wave is 1.27, compared to 1
for sinusoidal excitation.

For the case of Dirac excitation we found that lifetimes
evaluated from higher harmonics could give reasonable
F-values. This is seen in Fig. 7 for the case of a square
gain waveform, where harmonics 1, 3, and 5 (the first
three nonzero harmonics) all give minimum F-values be-
low 20. This is a promising result, as the gain profile of an
image intensifier is approximately a square wave [18].

D. Uneven Phase Step Positioning for Sinusoidal
Excitation
When only single harmonic sinusoidal gain waveforms
are used, reliable lifetime information can still be ob-
tained with unevenly spaced phase steps, as aliasing is
not a problem. We found that by careful placement of the
phase steps, lower F-values could be obtained. Two differ-
ent approaches were tried: first, placing a cluster of phase
steps around the “crossing points” (the triangles in Fig. 8)
and second, placing a cluster of points around the “peaks
and troughs” (the circles in Fig. 8).

We found that when points are clustered around the
“crossing points,” the F-value for the phase lifetime was
lowered compared to evenly distributed phase steps and
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Fig. 7. Graph showing the F-value as a function of 7 for Dirac
excitation with square gain for phase and modulation lifetimes.
The F-value data from higher harmonics are much better than
for the case with square excitation.

the F-value for the modulation lifetime was raised. The
opposite was true for points clustered around the “peaks
and troughs.” This was true for sinusoidal, square, and
Dirac excitation. Figure 9 shows the phase and modula-
tion lifetime F-values for Dirac excitation and sinusoidal
gain with uneven phase steps. Twelve phase steps were
used, clustered around the “crossing points” for phase and
around the “peaks and troughs” for modulation lifetime
measurements, with varying amounts of spread between
the individual steps (5° or 10°;, note that 30° with 12
phase steps corresponds to evenly spaced phase steps).
This analysis shows an optimum phase and modulation
F-value of 2.9 and 2.0, respectively. This optimum oc-
curred at modulation frequencies of 7=0.68 and 7=0.65
for the 5° phase step spacing and is over a 25% improve-
ment compared to the evenly spaced phase step case. An
analysis with sinusoidal excitation showed a similar im-
provement in the optimum phase and modulation
F-values to 6.4 and 7.1, respectively. The disadvantages of
this approach are that an approximate lifetime must be
known roughly a priori, as otherwise the “peaks and
troughs” and “crossing points” cannot be located, and that

2.0+

A Crossing clustered
® Peak / trough clustered

Intensity

Phase offset

Fig. 8. Diagram explaining the location of “crossing points” and
“peaks and troughs” for uneven phase step positioning.
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Fig. 9. Graph showing the phase F-value as a function of 7 for
Dirac excitation with sinusoidal gain (modulation depths of 1.0).
The phase steps were clustered around the “crossing points” or
“peaks and troughs” of the detected signal, with spreads of 5° and
10° shown for both phase and modulation lifetimes.
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Fig. 10. Comparison of the optimum F-values calculated for dif-
ferent operating parameters.

the gain or excitation waveform must not contain mul-
tiple harmonics (otherwise aliasing may lead to artifacts
in the lifetime analysis). Decreasing the separation of
phase steps too far results in a very narrow range of 7in
which good F-values are found for a given set of phase
step locations. This is undesirable, as in reality an image
will have a lifetime variation in it, and this is often pre-
cisely what one aims to measure. Further investigation is
required to fully develop the potential of using uneven
phase steps to obtain less noisy measurements.
All of these results are summarized in Fig. 10.

11. CONCLUSIONS

In conclusion, we have developed a theoretical frame-
work, backed up by Monte Carlo simulations, which al-
lows calculation of F-values for FD-FLIM with arbitrary
excitation and gain profiles. The analysis is more rigorous
than previous work, as it takes into account the data fit-
ting procedure used in actual experiments and allows for
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the arbitrary choice of excitation and gain waveforms. Us-
ing the theoretical framework developed, we found
F-values that were significantly different from previously
reported work and which changed markedly between dif-
ferent imaging scenarios. Since measurement accuracy
and collection time are very important parameters for
choosing between different lifetime imaging techniques,
this is an important result. Previous work had shown FD-
FLIM to have F-values higher than competing tech-
niques, such as time-gated imaging, but this work shows
that with the correct setup the F-values achievable can
approach similar values. For example, a typical time-
gated system with two gates has an optimum F-value of
1.7, compared to the optimal case shown here of 2.0 for
Dirac excitation with sinusoidal gain and uneven phase
steps. Also, previous work showed optimal F-values for
Dirac excitation occurred as 7— 0, which in real experi-
ments is not accessible. In the results shown here, opti-
mal F-values occur in the range 7=0.5— 1.5, which for a
typical lifetime of 3.0 ns corresponds to a range of 26
— 80 MHz modulation frequency. This is readily achieved
with current technologies [7,19]. Additionally, F-values
for time-domain techniques are for parallel acquisition.
New technologies allowing parallel acquisition for FD-
FLIM data [14] will increase the photon efficiency further.

The markedly different F-values obtained for different
imaging scenarios shows the importance of system opti-
mization in order to achieve the best possible sensitivity.
Generally, we found that the best F-values are obtained
by having a high modulation depth on both the excitation
and gain waveforms. As such, Dirac pulse excitation gave
by far the best F-values. The best gain waveform tested
for even phase steps was a square wave; however, ongoing
work is investigating the effect of rectangular gain pro-
files with reduced duty cycles. If a pure sinusoid is used
as either the gain or excitation profile, then better
F-values can be found by using only three phase steps.
However, F-values can be further improved by using N
=4 along with careful positioning of the phase step loca-
tions. In addition we showed that when both gain and ex-
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Fig. 11. Graph showing how the mean of phase and modulation
lifetimes can produce a lifetime measurement with an F-value
better than that for either measurement alone. This is because
the two measurements are taken in parallel. The case shown is
Dirac excitation with square gain (compare to Fig. 7).
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citation waveforms contain higher harmonics, a lifetime
and associated F-value could be calculated for each higher
harmonic present. For multiharmonic sinusoidal (e.g.,
square wave) excitation, we found that the F-values for
higher harmonics were extremely high, indicating very
noisy measurements. However, for Dirac excitation the
F-values for higher harmonics were more reasonable.
This suggests that for multiple frequency FLIM measure-
ments [18] a Dirac pulse would be a much better choice of
excitation waveform than, say, a square wave. Interest-
ingly, we found that adding extra phase steps did not re-
duce the F-value as might be expected. This means extra
phase steps can be used to combat the problem of aliasing
without reducing the photon economy.

It should be noted that phase and modulation lifetimes
from all harmonics are acquired in parallel. Initial inves-
tigations show that performing a weighted fitting to all
these data sets simultaneously can give even better
F-values over a larger range of values of 7, although this
calculation is limited to Monte Carlo experiments because
of its complexity. Figure 11 shows the Monte Carlo calcu-
lation for Dirac excitation with square gain, where the
F-value of the mean lifetime, 7,,04,=0.5(7,+7,,), is calcu-
lated. In this case the mean lifetime shows a better
F-value over a large range of values of 7.
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