
Rees et al. Optical Nanoscopy 2012, 1:12
http://www.optnano.com/content/1/1/12
ORIGINAL ARTICLE Open Access
Blind assessment of localisation microscope
image resolution
Eric J Rees1*, Miklos Erdelyi1,2, Dorothea Pinotsi1, Alex Knight2, Daniel Metcalf2 and Clemens F Kaminski1
Abstract

Background: This paper analyses the resolution achieved in localisation microscopy experiments. The resolution is
an essential metric for the correct interpretation of super-resolution images, but it varies between specimens due to
different localisation precisions and densities.

Methods: By analysing localisation microscopy as a statistical method of Density Estimation, we present a method
that produces a blind estimate of the resolution in a super-resolved image. This estimate is derived directly from
the raw image data without the need for comparisons with known calibration specimens. It is corroborated with
simulated and experimental data.

Results and discussion: Localisation microscopy has a resolution limit equal to 2σ, where σ is the r.m.s. localisation
precision, evaluated as an average Thompson precision, Cramer Rao bound, or otherwise. Further, for a
limited-sampling case in which there is only one localisation per fluorophore, the expected resolution of an
optimised super-resolution image is worsened to approximately 3σ, due to smoothing processes that are
necessarily involved in visualising the specimen with limited data. This 2σ or 3σ resolution can be estimated for any
localisation microscopy specimen, and this metric can corroborate or replace empirical estimates of resolution.
Other quantifiable resolution losses arise from sparse labelling, fluorescent label size, and motion blur.
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Background
Localisation microscopes can image biological samples,
under physiological conditions or even in vivo, with an
effective resolution better than 20 nm (Betzig et al. 2006,
Huang et al. 2008, Schroff et al. 2008). This capability is
providing striking new insights into cell biology on this
previously inaccessible scale, such as the intracellular
layout of the actin cytoskeleton, morphology of mem-
brane complexes, virus particle assembly, and the pro-
gression of protein aggregation in neurodegenerative
diseases (Hell 2007, Heilemann et al. 2008, Kaminski
et al. 2011). In fact the method has the scope to study all
manner of intracellular pathology and protein behaviour
in unprecedented detail.
Briefly, localisation microscopy techniques such as

PALM, GSDIM and (d)STORM, work as follows. A tra-
ditional fluorescence microscope is used to take video
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images of the specimen in question. The specimen is
labelled with photoswitchable fluorophores, which high-
light the protein or tissue of interest. The user applies
controlled illumination and solution chemistry condi-
tions so that these fluorophores photoswitch stochas-
tically, which produces a “blinking” fluorescence. This
blinking fluorescence, combined with a suitable camera
exposure time, enables the measurement of random,
bright spots of light which correspond to sparse subsets
of the fluorescent labels. The fluorescence images of
individual fluorophores are thus separated, and the
position of each one can be precisely determined com-
putationally from its image(s), once a sufficient quantity
of data has been captured. Commonly the analysis is
done by a “Segmentation and Sparse Gaussian Fitting”
algorithm (Wolter et al. 2010). Finally, the fluorophore
positions are typically visualized as a fluorophore density
map (Baddeley et al. 2010). The resulting super-resolution
“image” strongly resembles a conventional fluorescence
image, because it is likewise an estimate of the specimen
fluorescence density. However the fluorophore density
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map is typically an order of magnitude better resolved,
because it is generated from fluorophore positions deter-
mined with high (~10-30 nm) precision.
To correctly interpret images of unknown or little-

understood specimens – which is precisely the task for
which super resolution imaging is most important – it is
crucial to know the resolution of the system. When we
refer to the localisation microscopy system, this includes
the behaviour of the data fitting and visualisation algo-
rithms that are applied to measurements of a particular
specimen, as well as the optical instrument itself. Unfor-
tunately, the resolution achieved by localisation micros-
copy can vary greatly between samples, because the
accuracy of data fitting and visualisation depends on the
quality of fluorescence images and background noise
that are collected from the specimen. Therefore it is not
sufficient to evaluate the instrument resolution using a
calibration sample, and then state this as the resolution
when studying other objects. Instead, it is important to
estimate the particular resolution of each super-
resolution image. This can be done empirically when
measuring well-known samples such as actin filaments
or sparse dye molecules on a coverslip – and this is
often done for system calibration (Xu et al. 2012) – be-
cause the reconstructed image can be compared with
the known structure. For unknown specimens it is
necessary to make a blind assessment of how each
localisation microscopy image is limited by its own
source data. This paper discusses localisation micros-
copy as a Density Estimation technique (Parzen 1962,
Silverman 1986), and thus identifies a resolution limit
based on localisation precision – a quantity for which
we can obtain a blind estimate from raw image data.
Density Estimation theory also addresses the effect of
localisation frequency: the best super-resolution image
obtained with only one localisation per fluorophore
tends to be less well resolved than one constructed with
several detections, because successful visualisation of
limited data requires broader smoothing. Other issues
that can worsen the effective resolution include too-
sparse labelling, fluorescent label width, and motion
blur, and these effects can also be quantified.

Methods
Sample preparation
Pre-formed rabbit skeletal muscle actin filaments
(Cytoskeleton Inc) were diluted in general actin buffer
(Cytoskeleton Inc) to a concentration of 2 μM and
incubated with a 1 μl in 200 μl dilution of 6.6 μM
phalloidin-Alexa 647 solution (Invitrogen). These were
allowed to adhere to LabTek glass chambers for
2 hours prior to being imaged. Before addition of actin
filaments, LabTek glass chambers were treated with
2 M glycine for 30 min at 37°C and then coated with
0.05% poly L-lysine solution for 30 min at room
temperature.
Hela cells (ATCC, CCL-2) were grown to 80%

confluency in LabTek chambers in DMEM (Fisher,
VX31966021) containing FBS (Fisher VX10500064).
Cells were then starved in DMEM without FBS for 60
min followed by incubation with 1 μg/ml EGF-Alexa
647 (Fisher, VXE35351) in complete culture medium for
30 min at 37°C. Finally cells were fixed with 4% formal-
dehyde for 10 min and then washed with PBS.

Microscopy
Fluorescence images were taken on an Olympus IX71
inverted widefield microscope, with a 100x, 1.49 NA
TIRF objective lens. To induce photoswitching, the
LabTek chambers were filled with a “switching buffer”
solution: 100 mM mercaptoethylamine (MEA) in phos-
phate buffered saline (PBS, pH 7.4), together with a
glucose-enzyme oxygen scavenger (40 mg/ml glucose,
50 μg/ml glucose oxidase, 1 μg/ml catalase). Samples
were illuminated with 642 nm laser light at 2 kW/cm2.
Stacks of 104 images were collected at 65 Hz, with 10 ms
exposure times.

Image simulation and analysis
Simulated images were generated in MATLAB, after
(Thompson et al. 2002). For the single fluorophore simu-
lation, the expected number of photons arriving on each
camera pixel was calculated by integrating a Gaussian PSF
over the pixel, and allocating the corresponding propor-
tion of N detected photons. To simulate quantum photon
counting, this number was replaced with a random num-
ber generated from a Poisson distribution with the same
mean. Independent, Gaussian random noise of standard
deviation b was then added to each pixel. To simulate a
structured object (lines of fluorophores at 5 nm spacing,
crossing at 45º), a subset of the fluorophores was
randomly “activated” for each camera frame, and the
cumulative image of all the active fluorophores was
generated as above. Gaussian noise was added at the
end of this process.
Super-resolution images were reconstructed using a

“Segmentation and Sparse Gaussian Fitting” algorithm,
similar to (Wolter et al. 2010), implemented in MATLAB.
In each camera frame, local maxima brighter than a
threshold value were fit to a Gaussian PSF, by an iterative
least squares method. For each spot, a localised position
was obtained, as well as an estimate for the number of
photons of fluorescence, N. The camera noise b was
estimated on a framewise basis as the standard deviation
of camera pixel brightness in regions without any bright
spots. Average localisation precision was evaluated from
N and b using Equation 1. Localised fluorophore density
was visualised as a “histogram raster,” with simulations
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visualised in greyscale, and experimental results converted
from grey to a colormap for clarity of viewing.

Results and discussion
Precision limit
The super-resolution “image” typically generated by a
localisation microscope is a computational reconstruction
of the localised fluorophore density. This reconstruction
should be better resolved than a fluorescence image. A
conventional fluorescence image suffers directly from the
diffraction limit, which causes the specimen fluorescence
to be blurred by convolution with the optical point spread
function (PSF) of the microscope. By comparison, the
reconstructed super-resolution image of fluorophore
density is also imperfect – in this case the specimen fluo-
rescence density is degraded by an analogous Localisation
Error Function (LEF), which describes the uncertainty of
determining fluorophore positions by localisation. Usually
the LEF is much smaller than the PSF and the recon-
structed images are much better resolved than standard
fluorescence images. The difference arises because the
PSF represents the spread of a single photon position,
whereas the LEF represents the smaller spread in deter-
mining the centre position of N photons from the same
point source.
Fluorescent molecules can be localised as precisely as

10 nm or better in practice, by measuring a few thousand
photons, and resolutions of 20 nm can be achieved
(Huang et al. 2008). However, the localisation precision
Δx depends on properties that vary significantly between
samples: primarily the number of photons collected from
each fluorophore, and the background noise level. This
dependence was derived by Thompson as Equation 1
(Thompson et al. 2002):

< Δxð Þ2 >¼ s2 þ a2=12
N

þ 8πs4b2

a2N2
ð1Þ
Figure 1 Localisation microscope resolution is fundamentally limited
measured with a precision-limited blur; and (b) a finite number of localisat
continuous specimen. (c) With only a few localisations (Red, Green, Blue ca
worsens resolution compared with the case of dense localisation (b).
Here, <Δx2> estimates the random variance of a
localised fluorophore position, when the optical point
spread function is approximately Gaussian with standard
deviation s; a is the side-length of the detector pixels; N
is the number of photons detected from the fluorophore;
and b represents the number of photons of random
camera noise in each pixel.
What image resolution is achievable with this loca-

lisation precision? Localisation microscope resolution is
fundamentally limited by two steps, illustrated in Figure 1:
(1) by imperfect determination of fluorophore positions;
and (2) by visualising the specimen based on a finite num-
ber of fluorophore position samples. Localisation precision
concerns the first step, and to quantify its effect on reso-
lution we consider the model scenario of “frequent, un-
biased localisation with Gaussian errors.” Here, “frequent”
measurement means that each fluorophore tends to be
localised many times. “Unbiased” measurement means
that localisations are detected from each individual
fluorophore at the same average rate, and no spurious
localisations are made. The positional errors are taken
to be independently normally-distributed (assumed ex-
perimentally valid), so the probability density for a
fluorophore with position x0 to be localised at position
x is p(x):

p xð Þ ¼
ffiffiffiffiffiffi
2π

p
σ

� ��2
exp � x� x0j j2=2σ2� � ð2Þ

Here, p(x) is the LEF, which is defined to have a true
variance of σ2. The <Δx2> in Equation 1 provides an
estimate of σ2. In what follows we denote estimates of σ
as σ̂ . The p(x) stated here is two dimensional with
circular symmetry. If necessary, p(x) could be made
elliptical or three dimensional by replacing the term in
the exponential with a more general x0Ax, and adjusting
the normalisation term.
by two issues. (a) finite localisation error means that the true object is
ions must be smoothed (and further blurred) to visualize the
ses) the best visualisation requires significant smoothing which
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Let a model specimen be defined by a static 2-
dimensional fluorophore density, ρ0(x), comprised of
Dirac delta functions representing M distinct fluoro-
phores.

ρ0 xð Þ ¼ Σ
M

i¼1
δ x� xið Þ ð3Þ

In the model described above, the localisation micro-
scope identifies fluorophore positions drawn from the
probability distribution ρm.

ρm xð Þ ¼ 1
M

ρ0∗p ¼ c
XM
i¼1

exp � x� xi
2=2σ2
�� ���� ð4Þ

In this model, each fluorophore contributes the same
probability weight to the measurement. The * denotes
convolution, and c is a normalisation constant.

c ¼ 2Mπσ2
� ��1 ð5Þ

The localisation microscope samples a set of fluoro-
phore localisations, which can be thought of as a collec-
tion of n delta functions, having the same form used to
model the specimen in Equation 3 (but generally different
positions due to finite localisation errors).

ρs xð Þ ¼ Σ
n

j¼1
δ x� xj
� � ð6Þ

For simple cases with only a few localisations, ρs can
be directly visualised as a scatter plot. More typically,
however, this set of fluorophore positions is used to
generate a fluorophore density map of the specimen, by
one of several possible methods (Baddeley et al. 2010).
One effective visualisation is to construct a cumulative
super-resolution image by plotting each localisation as a
small blur (typically a Gaussian) of fluorescence intensity
(Bates et al. 2007). This method is known in statistics as
Kernel Density Estimation (Parzen 1962), but for simpli-
city and accessibility we may refer to its use in loca-
lisation microscopy as “Gaussian Visualisation.” In this
method, the point-like localisations are smoothed, by
convolution with a suitable kernel function K, to esti-
mate the fluorophore density of the specimen. Kernel
Density Estimation obviates the hard-edge artefacts seen
in histograms; however it requires the user to identify an
optimal kernel width. Using a too-wide kernel for the
visualisation can throw away resolution by oversmoothing
regions of high sampling density. Adaptive-width methods
of kernel density estimation can prevent this problem
(Breiman et al. 1977), by plotting narrower kernels in
densely sampled regions, and Baddeley’s jittered histogram
visualisation achieves the same effect.
The Gaussian Visualisation method is tractable for

resolution analysis, because it involves a convolution
analogous to a point spread function. In Equation 7 we
therefore consider the super-resolution image described
by ρv, which is obtained by smoothing the localisations
ρs with a kernel K. In Gaussian Visualisation K is a 2-
dimensional Gaussian, hj scales its width to suit the local
sampling density, and hj

-2 normalises the weight of each
localisation in the reconstructed image.

ρv xð Þ ¼ Σ
n

j¼1

1
h2j

K
x� xj
hj

� 	
ð7Þ

In the model scenario of “frequent” localisations,
n→∞ and ρs converges in distribution towards ρm, i.e.
the localisations perfectly map out the measurement
probability. The reconstructed super-resolution image,
ρv, will then also converge to ρm, provided that we
“draw” it using a suitably narrow kernel K – tending to-
wards a delta function in the limit of infinite localisa-
tions. In this model, with “infinite” localisations, the
localisation microscope has generated an image simply
by convolving the true fluorophore density with the lo-
calisation error function p(x).
Clearly the LEF blurs this ideal super-resolution image

in the same manner as a PSF acts on a conventional
image. Hence the image resolution can be determined
analytically by studying the LEF with an optical reso-
lution criterion. The Sparrow criterion is suitable be-
cause it can be evaluated for a Gaussian LEF, whereas
the Rayleigh limit is only defined for Airy functions
(Sparrow 1916). The Sparrow limit states that point
sources are resolvable if they are sufficiently separated
that their overlapping images (PSFs) produce a pattern
with an intensity minimum lying between their posi-
tions. For a Gaussian PSF (or LEF) the Sparrow limit of
resolution is satisfied for separations greater than 2σ.
Crucially, we can estimate σ for each fluorophore local-
isation, by applying Equation 1 to the photon statistics
(N and b) of the raw image data. This blind estimate (σ̂ )
of σ indicates the resolution limit of any super-
resolution image. Of course, the estimated localisation
precisions typically encompass a spread of values; how-
ever since we are assuming independent, normally-
distributed errors, we can obtain the estimate σ̂ from
the r.m.s. error (note (Holtzman 1950)).

σ̂≈

ffiffiffiffiffi
σ2
∧

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ
n

j¼1
Δxð Þ2
 �

j=n

r
ð8Þ

If the fluorophore properties are homogenous (in terms
of Signal-to-Noise, N and b), then we can take this average
over the whole image; or if not then we could evaluate it
on a regional basis. We can then state 2 σ̂ as the Precision
Limit of resolution for this particular super-resolution
image. This resolution limit can be corroborated by
simulations, as illustrated in Figure 2. It also provides a
good indication of resolution that is achieved with real



Figure 2 Localisation error, due to finite fluorescence Signal and camera Noise, means that multiple independent localisations of a
fluorophore produce a blurred map of fluorescence density, analogous to a Point Spread Function. 104 images of a single fluorophore
were simulated, each with N = 103 photons, and parameters (b = 10, and a = s = 160 nm) such that Equation 1 predicts a localisation error of 9.6
nm. After applying a super-resolution algorithm to these simulated images in MATLAB (using sparse Gaussian fitting similar to (Wolter et al.
2010)), the localised positions were found to have a standard deviation of 9.8±0.25 nm. The average Thompson precision estimated from the
image data (without using the known parameters N and b) was similar, at 9.3 nm – with the difference due to slight overestimation of signal, N.
This localisation error, normally-distributed, implies the Sparrow criterion of resolution is about 20 nm. (b) A simulated object (i) consists of 2 lines
of fluorophores, at 5 nm spacing, crossing at 45º. Its diffraction limited image is shown in (ii), and in (iii) a super-resolution image of the localised
fluorophore density was reconstructed from data simulated as for the single fluorophore images used in (a), but with random activation of
fluorophore subsets. A mean of 80 localisations were obtained per fluorophore, which avoids significant sampling limitation. Cross sections
through the super-resolved image show that a limiting Sparrow resolution of about 20 nm was achieved (blue line), at the Precision Limit
expected from Equations 1 and 8 (iv). (c) Nyquist-limited resolution: if the localisation precision supports a resolution finer than the fluorescent
label spacing, the microscope will (correctly) resolve a pointillist image. This means finer scale information about the underlying specimen is not
found, and the size of features smaller than about twice the label spacing cannot be reliably measured.
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experimental specimens (Figure 3), although real samples
tend to be slightly less well resolved due to the finite num-
ber of localisations, which is discussed in the next section.
Some final remarks on precision-limited resolution are

important. This blind estimate of the resolution limit,
using Equations 1 and 8, is similar to the empirical
resolution evaluated by localising a static point source
several times, and reporting the FWHM (~2.4 σ̂ ) of the
spread of localised positions (Xu et al. 2012). Whereas
the empirical method is a direct measure of resolution for
calibration samples, the blind estimate is an indirect
method that does not require a known specimen. Finally,
the principle of precision-limited resolution is not restricted
to estimates of localisation error obtained by Equation 1. In
Bayesian localisation of sparse fluorophores, for example,
the Cramer-Rao bound can provide a valid estimate of Δx2

for each fluorophore position (Kay 1993, Ober et al. 2004,
Shaevitz 2009).

Sampling limit
Crucially, the Precision Limit is the smallest possible
distance that can be resolved by localisation microscopy.
This resolution is achieved only if the number of locali-
sations is infinite. Sampling limitation worsens the
resolution in practice, when the number of localisations
is finite, and the extent of this resolution loss can be



Figure 3 Super-resolution images of: (a) actin filaments stained with phalloidin-Alexa fluor 647 on glass. In (a) the Precision Limit of
resolution is calculated as 53 nm and the limited sampling resolution is 80 nm, using Equations 1 and 8. The FWHM of the actin filament in the
grey boxed area is plotted as an inset histogram to show the empirical resolution, and these FWHM values range from 56 nm to about 110 nm,
with a mean of 79 nm. The empirical resolution is broadly consistent with the blind-assessed values that were calculated. The spread of FWHM
arises from variable localisation precision, and from random permutations of the finite number of localisations that comprise each cross section.
The localisation density of a cross section through two crossing filaments (red line) shows that features can be resolved at separations larger than
the calculated resolution limit, as expected. (b) Epidermal growth factor (EGF) is conjugated to Alexa fluor 647 on HeLa cell surfaces, and bound
to EGF receptors. Activation of EGF receptors results in dimerisation of receptors and clustering into pits and vesicles with diameters ranging from
50–150 nm. A Precision Limit of 60 nm was calculated from the raw data, which provides the user with confidence that the sub-diffraction sized
clustering is a real structure.
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studied by treating localisation microscopy as a “Density
Estimation” task (Silverman 1986) within the model
provided by Equations 1–7.
The perfect result of super-resolution would be to de-

termine and visualise the exact fluorescence distribution
of the specimen, ρ0. However the finite localisation error
means that the best visualisation achievable without
deconvolution is ρm, analogous to the way a PSF blurs a
conventional image. Given only a finite number of locali-
sations, some smoothing must be applied to ρs to obtain
the best visualisation, ρv. The Gaussian Visualisation
method blurs the observations and further reduces the
image resolution – so why is it necessary? The answer is
given by the theory of Density Estimation, in which the
objective is to minimise the difference between the visu-
alisation, ρv, and the measured quantity ρm (Breiman
et al. 1977). If a small sample of localisations is blurred
too narrowly, then the visualisation will be spiky, so the
difference between ρv and ρm may be drastic, and the
super-resolution image could be misleadingly punctate.
On the other hand, too coarse a smoothing process will
worsen the resemblance of ρv to ρm, and also waste
resolution. Determining the best width of a kernel
smoothing filter is a central task in Density Estimation.
The best kernel width will optimise some figure of
merit, such as the expected mean square error between
the true distribution (ρm) and the visualisation ρv. The
optimum kernel can be identified if the underlying
structure (ρm) is already known, but this is not usually
possible in practice. Some cases are well studied, how-
ever, and provide guidelines for the best kernel width. If
ρm is known to be a single Gaussian, then an optimum
smoothing kernel is itself a Gaussian of standard de-
viation h, (Silverman 1986).

h ¼ 0:9m
n1=5

ð9Þ

In this case m is the underlying standard deviation
(estimated by σ̂ ), and n is the number of localisations.
The n-1/5 term means this smoothing filter tends to a delta
function as the number of localisations tends to infinity,
which means the Precision Limit of resolution will be
achieved in this case. For the case of a single localisation,
the optimum smoothing filter is a Gaussian of width
(standard deviation) ~ σ̂ . This visualisation is optimised
for a specimen described by a single Gaussian ρm: it would
provide a good visualisation when the object is a single
fluorophore on a coverslip, or for well-separated fluoro-
phores. Real microscopy specimens are likely to contain
multiple structures with various length scales, and for this
type of distribution an adaptive kernel width with superior
properties was proposed by (Breiman et al. 1977).

hj ¼ αdjk ð10Þ

Here hj is the kernel width which should be applied to
the jth localisation, where djk is the kth nearest neighbour
distance of the jth localisation, and α is a scaling constant.
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Optimisation of α and k is discussed in (Breiman et al.
1977). The key message is that the optimum kernel width
depends on both the local sampling density (distance
between localisations) and the underlying structure.
Having evaluated the amount of smoothing required

to produce the optimal Gaussian Visualisation of a spe-
cimen, the length scale of this visualisation can be used
to estimate the best image resolution that can be
achieved when the number of localisations is finite. An
interesting case is the scenario in which each fluoro-
phore is localised exactly once. This could happen as a
consequence of measuring a short data series (e.g. due
to rapid bleaching), or intentionally (e.g. in a molecule
counting experiment designed to capture a single bright
image of each fluorophore, before bleaching it). With
only a single localisation per fluorophore, the sampling
density will probably not tend towards the “infinite” value
needed to achieve the Precision Limit of resolution. The
“best” visualisation method indicated by Equation 9 is to
smooth the localisations with a Gaussian of standard
deviation σ̂ . Let us assume that a sample-dependent treat-
ment with (Breiman et al. 1977), or another optimisation,
does not significantly alter this value. In this case the
average super-resolution image, <ρv >, is blurred by con-
volving the localised positions with a Gaussian visualisa-
tion kernel of standard deviation σ̂ . The localisation
microscopy image is therefore degraded twice: first by
localisation error, and second by the smoothing required
for visualisation. Both are convolutions with a Gaussian of
standard deviation ~ σ̂ , and this double convolution is
equivalent to a single convolution with a Gaussian of
standard deviation

ffiffiffi
2

p
σ̂ (Hirschman and Widder 1955).

This analysis leads to the remarkably simple result
that, whereas the Precision Limit of resolution achieved
with an infinite number of localisations is 2 σ̂ , an image
produced with a single localisation per fluorophore has
its expected resolution coarsened (assuming optimal
visualisation) to about 2

ffiffiffi
2

p
σ̂ , or approximately 3 σ̂ .

Importantly, this is an average or expected resolution:
with a limited number of localisations there are many
possible permutations of the super-resolution image, as
shown in Figure 1c, but 2

ffiffiffi
2

p
σ̂ is the average resolution.

Furthermore, the optimal amount of smoothing required
in Gaussian Visualisation is subjective and cannot be
determined exactly without knowing the structure of the
specimen beforehand. However, a Precision Limit of 2 σ̂ ,
and a limited sampling resolution of 3 σ̂ , can provide a
useful blind estimate of the resolution achieved with a
real specimen.
These resolution estimates are derived for localisation

microscopy using a Gaussian Visualisation. How do al-
ternative visualisation algorithms compare with this?
Histogram visualisation (Wolter et al. 2010), for exam-
ple, involves “binning” the localisations onto a grid of
super-resolution pixels. The width of the histogram
pixels effectively smoothes or blurs the localisation data,
analogous to the smoothing involved in visualisation by
convolving the localisations with a Gaussian. Based on
this similarity, it seems plausible that a skilful histogram
visualisation can achieve a resolution that is similar to
the limit obtained by smoothing with a Gaussian, al-
though the histogram is likely to be slightly worse due
to hard-edge features. Certainly the histogram method
asymptotes to the same Precision Limit, since in the case
of infinite localisations a histogram can be plotted using
infinitesimal bin widths and hence no loss of resolution
due to plotting. The jittered histogram visualisation is
based on a principle similar to an adaptive-width kernel,
and should achieve the same resolution (Baddeley et al.
2010). A simple scatter plot, however, is a discontinuous
visualisation and its resolution therefore cannot be directly
compared with the continuous image visualisations con-
sidered above.

Nyquist (labelling) limit
Nyquist-limited resolution relates to the fluorescent
labelling of a specimen. It is well known that discrete la-
belling constrains the useful resolution of any imaging
method (Schroff et al. 2008). The essential idea is that
features smaller than twice the typical separation of
fluorescent labels cannot be reliably measured, due to
aliasing, even if the precision-limited resolution of the
microscope would be sufficient to do so, as shown in
Figure 2c. Note that this limit arises from the distance
between fluorophores on the sample. This is generally
different from the distance between localisations, since a
fluorophore might be localised several times; however if
the fluorophore is static on the specimen then simply
obtaining multiple localisations will not increase the
underlying label density, and it is the spacing of the
fluorophore labels that determines whether features are
measurable. The fluorophore spacing can be estimated
based on the known size of antibody labels, or by extrapo-
lating from the density of localisations – in some cases this
latter approach is simple, for example if there is precisely
one localisation per labelled position (Shim et al. 2012).
Since the Nyquist limit is a concept from Fourier

analysis, it strictly refers to subjects that are sampled at
regularly spaced intervals. This is not true for loca-
lisation microscopy, where fluorophores are usually
attached at random positions on their substrate. Further,
specimens generally have very dense-labelling in some
areas, and very sparse labelling in others. This means
that the question of what resolution limit is imposed by
label density is more complex than finding the average
distance between fluorophores. There is a strong varia-
tion in the label density on different parts of a specimen,
so fluorophore spacing and hence the Nyquist limit of
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resolution must be evaluated for particular features.
This is a sample-dependent issue, and the best way to
evaluate the Nyquist limit of resolution should be con-
sidered on a case-by-case basis.
Nyquist-limited resolution can also arise in print or

on-screen images. When super-resolution images are
displayed as a square raster, the pixel width must be less
than half of the resolution that needs to be illustrated.
Therefore the value of σ̂ , from Equation 8, provides an
indication of the best pixel size to use when plotting a
super-resolution image.

Fluorophore width and corrected motion blur
So far the localisation microscope resolution has been
evaluated with respect to the actual fluorescence of the
sample. However, the purpose of super-resolution is
usually to visualise some fluorescently-labelled struc-
ture, and this structure is in fact less precisely deter-
mined than the fluorescence due to the finite size of the
fluorescent labels. If each fluorophore is localised with a
precision σ, but the size of an antibody label causes
the fluorescence to be displaced from the structure of
interest by a distance d, then the effective localisation
precision of the instrument is worsened. If the displace-
ment of each localisation is in a random direction then
the loss of precision can be modelled as a random walk.
(A random displacement of the localised positions may
occur for flexibly-attached fluorophores, or as an ap-
proximation in the case of rigidly-attached fluorophores
– this approximation would be most valid for fluoro-
phores that are more closely spaced than the localisa-
tion precision, σ, so that a localisation drawn from a
particular area of the sample may come one of various
fluorophores, each with static but random orientations,
leading to a random offset in the localisation.) A similar
loss of resolution can occur when drift-correction is
applied to localisation microscopy data. In such cases, a
fiducial marker is often used to track the localisation
microscopy specimen, and any translational movement
of the marker is subtracted from the localised fluoro-
phore positions to mitigate motion blur. If the fiducial
marker is itself localised with a finite random error, σfid,
then its positional error worsens the effective precision
of the corrected data. The instrument precision, fluores-
cent label size and uncertain drift correction can be
combined as a random walk to estimate the effective
localisation precision of the instrument, σeff.

σ2eff

∧

¼ σ2
∧

þd2 þ σ2fid

∧

ð11Þ

The range of 2-3 σeff

∧
then provides a corrected esti-

mate of microscope resolution for the sample in ques-
tion. Ideally the fluorescent label size and any inexact
correction of motion blur should have a negligible effect,
compared with fluorophore localisation precision.

Z-resolution in 3D localisation microscopy
The principle outlined so far is that the resolution of lo-
calisation microscopy depends on two factors, (a) local-
isation precision and (b) smoothing required for
visualisation of finite data, and that a blind estimate of
this resolution can be evaluated from the same source
data that is processed to obtain a super-resolution
image. This principle extends to three-dimensions; how-
ever the maths needed to evaluate the z-resolution varies
between the different implementations of 3D localisation
microscopy. Here we outline the general principles
involved in assessing z-resolution. The task is simply to
process the image data to estimate the standard error of
each localised position in the z-direction, as well as in
the lateral x and y directions. We also need to specify
what it means to visualise a structure in three dimen-
sions. In some methods of 3D localisation microscopy
the visualisation may be a z-stack of super-resolution
images, and in other methods the mean z-position of
localisations may be indicated with a colour code (which
is unsuitable for showing features at multiple z-posi-
tions). Neither of these methods is perfect. To evaluate
the theoretical limit of z-resolution, it is possible to extend
Equation 7 into three dimensions, so that the three-
dimensional scatter plot of localisations (ρs3) is smoothed
into a three dimensional scalar field of localisation density
(ρv3) – probably with an ellipsoidal smoothing function.
This representation can then be sliced or projected onto
various planes for visualisation in 2D.
The method required to estimate the error of z-

localisation depends on the technique used for 3D
localisation. In the astigmatism-based method of 3D lo-
calisation, the vertical or horizontal ellipticity of a fluor-
ophore image is used to evaluate its z-position. In this
method, a Bayesian method of z-localisation is ideally
suited to estimating the z-localisation error at the same
time as the z-position (Shaevitz 2009). Alternatively the
uncertainty in z-position could be evaluated by algebraic
error propagation of the uncertainties in the x- and y-
widths fitted to each PSF. In either case, once the
uncertainties of the z-positions have been evaluated, the
z-resolution follows from the method derived above for 2-
dimensions. The Precision Limit of z-resolution is simply
twice the estimated localisation error, and the limited
sampling case is three times. Unfortunately, this resolution
has to be evaluated on a regional basis, rather than being
uniform over the image. This is because of an interesting
drawback of astigmatism-based 3D localisation micros-
copy: the optical PSF widths, and hence the Precision
Limits of resolution, are dependent on z-position and they
are different in the x and y directions. The z-resolution
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also varies with z-position, and is asymmetric. This makes
it harder to express the resolution of a super-resolution
image, even for a single z-slice. This drawback does not
afflict the double-helix method of 3D localisation micros-
copy, since in that system the lateral and axial localisation
precisions are translationally invariant over the depth of
field (Badieirostami et al. 2010). In the double helix
method, the uncertainty of z-positions could be estimated
via a Fisher information approach, or by comparison with
tabulated calibration data. Another 3D localisation mi-
croscopy technique is the biplane method: in this
method, the ratio of image intensities measured from
different focal planes within the sample is used to deter-
mine the z-position of a fluorophore (Juette et al. 2008).
This technique also benefits from translationally invariant
lateral resolution, and fairly homogenous axial resolution,
however the uncertainty of z-position may have to be
estimated via a lookup table of calibration data. The lateral
localisation precisions could be estimated using the
Thompson formula.
A final comment on z-resolution is that the image of a

three-dimensional specimen may contain a much higher
density of fluorophores than the image of a flat, two-
dimensional specimen. In order to achieve sparse fluores-
cence images of individual fluorophores, subject to the
constraint of limited photoswitching ratios, the spacing of
fluorescent labels will need to be greater. This means that
the Nyquist limit of resolution in 3D localisation micros-
copy may pose a greater problem than in 2D.

Mislocalisations and uncorrected motion blur
Localisation microscopy is predicated upon the ability to
identify individual fluorophore positions, based on
sparse fluorescence image data. Quality control methods
are applied, either implicitly or explicitly, to exclude
imprecise or spurious localisations, but some mislocali-
sations may persist which are not from single, photo-
switching fluorophores. When the localised fluorescence
density is visualized, these features may result in various
artefacts. Some examples are: persistent fluorescent back-
ground features may be visualized as spots of concen-
trated fluorophore density; overlapping fluorescence
signals from close, but separate, features may be visualized
as a spurious blur of fluorophore density in between the
features; and mobile fluorescent molecules that wander
through the focal plane of the microscope may result in
“salt and pepper noise” or “ant tracks.” Uncorrected
mechanical drifts of the specimen can generate “motion
blur” in the reconstructed image – although this motion
blur is in fact a correct visualization of a moving sample,
it is unhelpful and worsens the resolution of the system.
Lateral drift may be corrected using a method such as
fiducial markers. Drift in the z-direction may also
occur. As well as leading to a vertical streaking of the
visualisation – which resembles a worsened z-resolution
– z-drift also causes features to move relative to the
focal plane of the microscope. Features that lose focus
have a broader optical PSF, and hence a worse loca-
lisation precision (after Equation 1), and therefore the
Precision Limit of the (lateral) resolution is also wor-
sened for specimens that experience z-drift. Fiducial
markers may be able to correct the motion blur caused
by z-drift, but can do nothing to prevent the loss of
resolution that arises from broader PSFs and the conse-
quent loss of (lateral) localisation precision.
Because mislocalisations arise from a failure of the

assumption that underlies localisation microscopy – they
occur when it is not possible to localise precise positions
exclusively from individual fluorescent labels, and so
Equations 2–7 do not properly describe the process – their
impact on instrument resolution is difficult to quantify.

Conclusion
The resolution of localisation microscopy depends on the
fluorescence properties of the specimen, specifically the
number and precision of fluorophore localisations. There-
fore it is important to assess the resolution achieved with
unknown samples by analyzing their particular datasets,
since it can differ significantly from the resolution
evaluated for a calibration sample. Fluorophore positions
determined by a localisation microscope have a finite
error, and the spread of these errors is analogous to the
optical point spread function of a traditional light micro-
scope. Since the error of each fluorophore localisation can
be estimated using Thompson’s Equation 1, or as a
Cramer-Rao bound, the average localisation precision (σ)
of a fluorophore density reconstruction leads to a practical
estimate of the resolution limit due to instrument preci-
sion of 2σ. This resolution limit is readily calculable from
raw image data, and provides a useful guideline for the
resolution achieved in a localisation microscopy image.
Furthermore, in a case of only one localisation per fluoro-
phore, the average resolution is worsened to about 3σ, be-
cause of the quantity of smoothing required to produce a
realistic visualisation of the specimen using limited data.
As well as the precision and sampling limits of reso-

lution, a separate constraint on the effective resolution of
a localisation microscope can arise as Nyquist limitation
due to fluorescent label density. Also, the effective localisa-
tion precision may be worsened by fluorophore width or
motion blur correction. Spurious localisation data should
be excluded by stringent quality control criteria, as it can
otherwise generate artefacts that are hard to quantify.
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