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ABSTRACT: Molecular self-assembly of short peptide building
blocks leads to the formation of various material architectures that
may possess unique physical properties. Recent studies had
confirmed the key role of biaromaticity in peptide self-assembly,
with the diphenylalanine (FF) structural family as an archetypal
model. Another significant direction in the molecular engineering of
peptide building blocks is the use of fluorenylmethoxycarbonyl
(Fmoc) modification, which promotes the assembly process and
may result in nanostructures with distinctive features and macro-
scopic hydrogel with supramolecular features and nanoscale order.
Here, we explored the self-assembly of the protected, noncoded
fluorenylmethoxycarbonyl-3,5-diphenyl-Ala-OH (Fmoc-Dip) amino
acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the
assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid
coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the
arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution
evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a
bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-
scattering colorful surfaces.

KEYWORDS: self-assembly, Mie scattering, colored surfaces, microspheres, biaromatic amino acid, amino acid self-assembly,
Fmoc modification, opal-like

1. INTRODUCTION

Recent advances in bioorganic nanotechnology have established
the notion that very simple building blocks, such as dipeptides,
can form regular nanostructures with distinct mechanical,
optical, piezoelectric, and electronic properties.' > In particular,
members of the diphenylalanine (FF) dipeptide archetypal
family have been shown to form various morphologies and
ordered nanostructures such as tubes, rods, fibrils, spheres,
plates, and macroscopic hydrogels with nanoscale order.*”*
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Recent studies have demonstrated the control over rod-like
assemblies, as well as the rational prediction of toroid-like
assemblies.” "' Some of these structures exhibit remarkable

physicochemical features, including high thermal stability,
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Figure 1. Structure of Fmoc-Dip needle-like crystals. (a) Fmoc-FF and Fmoc-Dip molecular scheme. (b) Phase diagram of 55 assembly conditions
and the corresponding structures in solution taken 72 h following sample preparation. Assembly conditions determine the kinetics and morphology:
spheres (blue), fibrils (red), and needle-like crystal aggregates (green). The white area represents conditions in which no assemblies were visible. In
black are conditions that could not be achieved with the initial stock solution of 10 mg/mL Fmoc-Dip in EtOH. (c) Needle-like crystals propagating
from a nucleation site. Scale bar is 100 ym. (d—f) Crystal structure of Fmoc-Dip determined using X-ray scattering. View of the unit cell as
determined for single Fmoc-Dip needle-like crystals (d). Crystal packing down the crystallographic ¢ axis (e). Aromatic rings (orange) to display the

aromatic continuity within the crystal, as viewed down the a axis (f).

metallic-like mechanical rigidity, luminescence, piezoelectricity,
and semiconductivity."* "

The importance of aromatic moieties in facilitating and
modulating self-assembly has been previously demonstrated,
both theoretically as well as experimentally.'"'® In a
comprehensive study, a nonbiased exploration of all 8000
tripeptide combinations composed of the 20 coded amino acids
revealed the contribution of aromatic pairs in promoting self-
assembly into ordered structures.'” Importantly, all 10 top-
scored tripeptides contain a pair of aromatic residues; in all
cases, phenylalanine paired with another phenylalanine,
tryptophan, or tyrosine.

In addition to the amino acid nature, terminal cap
aromaticity was also found to significantly modulate the self-
assembly of bioorganic building blocks.'”*°™** N-terminal
capping with an Fmoc moiety is one of the most studied
modifications that affect peptide self-assembly.”® Modification
of very short peptides, and even single amino acids, with this
moiety promotes their efficient assembly into ordered nano-

metric architectures, possessing distinctive physical proper-
ties.”*

Recently, there has been an increased interest in bioorganic
self-assembly systems that exhibit optical features, such as

15,16,25,26 . .
S and waveguldance.3 FF assemblies

photoluminescence
can act as an active optical waveguiding material, allowing
locally excited states to propagate along the axis of the
assemblies.” In addition, Fmoc-capped building blocks were
shown to display remarkable optical properties, such as
quantum confinement and fluorescence.”’

The ability of FF to self-assemble into ordered structures was
discovered by a systematic reductionist exploration of biological
recognition modules in an amyloidogenic polypeptide.”®
Applying a similar reductionist approach, we explore here the
possibility of substituting the aromatic pair of self-assembling
dipeptides with a biaromatic side chain of a single amino acid.
This is in line with the recent interest in amino acid materials

that show remarkable physical properties.29_3l
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Figure 2. Fmoc-Dip spheres. (a) AFM micrograph of an array of spheres. (b) Bright-field microscopy image of the sphere array at low magnification
(X4). Scale bars are S00 ym. (c) STEM image of a single sphere at 0° and 60° tilt. Scale bars are 100 nm. (d) Virtual cross section of the STEM
tomogram. Scale bar is 500 nm. (e) 3D image constructed from a tilt image sequence (—72° to 72°, increment 1.5°). (f) Powder XRD spectrum

exhibiting a characteristic amorphous peak.

2. EXPERIMENTAL SECTION

2.1. Fmoc-Dip Crystallization. Fluorenylmethoxycarbonyl-f,f-
diphenyl-Ala-OH (Fmoc-Dip, Bachem) stock solutions were prepared
in absolute ethanol, diluted into double-distilled water at a 1:1 ratio,
and incubated in a polypropylene conical tube at room temperature for
several weeks. The resulting colorless, needle-like crystals were visible
on the tube—solution interface. The structural morphology was
determined using bright-field microscopy.

2.2. Single-Crystal X-ray Diffraction. The Fmoc-Dip crystal was
transferred to Paratone oil (Hampton Research), mounted on a
MiTeGen loop, and flash frozen in liquid nitrogen. Crystal data for
Fmoc-Dip measured at 100 K on a Bruker D8 Venture diffractometer
equipped with [A (CuKa) = 0.154184 A] radiation. The data were
processed with Bruker D8 Venture suite. The structure was solved by
direct methods with SHELXT-2013 and refined with full-matrix least-
squares refinement based on F2 with SHELXL-2013. Crystallographic
data are presented in Table S1 and are available from the CCDC with
deposition numbers 1557856.

2.3. Atomic Force Microscopy. Topography measurements by
atomic force microscopy (AFM) were performed using a JPK research
AFM (model NanoWizard III) in the force spectroscopy mode.
Gwyddion software version 2.37 was used to create the AFM images.

2.4. Scanning Transmission Electron Microscopy Tomog-
raphy. A solution of 10 mg/mL of Fmoc-Dip in 100% EtOH was
prepared. A sample 20 uL of the solution was dried on a glass slide to
form spheres. The spheres were scraped off, taken up in 50% EtOH,
and dried on a 3 mm transmission electron microscopy (TEM) copper
grid with a hole of 1 mm diameter covered with a layer of carbon on
top of a Formvar film. The tilt-series was collected on a JEM-2100F
electron microscope (JEOL) operated at an acceleration voltage of 200

kV in the scanning transmission mode. Electron micrographs were
recorded with a bright-field detector at a pixel size of 2.74 nm. A tilt-
series was recorded from —72° to +72° at increments of 1.5°. The
tomogram was created out of 96 images using the IMOD software
package.>* Images were first aligned to an image stack and then
computationally reconstructed using a weighted back-projection
algorithm to form the tomogram.

2.5. X-ray Powder Diffraction. A sample of Fmoc-Dip 10 mg/
mL in 100% EtOH was dried on a Si zero-background holder (Si
single-crystal wafer, which surface is (510) plane). Diffraction
measurements were carried out in reflection geometry using a
TTRAX III (Rigaku, Japan) diffractometer equipped with a rotating
Cu anode, operating at 50 kV/200 mA. A bent graphite
monochromator and scintillation detector were aligned in the
diffracted beam. 6/260 scans were performed under specular conditions
in the Bragg brentano mode with variable slits. The 26 scanning range
was 3—45° with step size 0.025° and collection time of 15 s per step.

2.6. High-Resolution Scanning Electron Microscopy. Samples
of tetra-F and penta-F solutions at 1:25 and 1:5 AcOH/water ratios,
respectively, were placed on glass slides and were left to dry at room
temperature. Samples were then coated with Cr and viewed using a
JSM-6700 field-emission high-resolution scanning electron microscope
(HR-SEM) (Jeol, Tokyo, Japan), equipped with a cold field emission
gun, operating at 10 kV.

2.7. Image Analysis. HR-SEM images were analyzed using Image]
1.45S. Sphere diameter distribution was measured using Analyze
Particles function of the software, and edges were excluded. Filters of
circularity (0.2—1) and particle size (0.1—o0o um) were applied.

2.8. Confocal Microscopy and Spectral Imaging. Spatially
resolved images of the intrinsic fluorescence of spheres dried on a glass
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Figure 3. (a) Fluorescence (left) and differential interference contrast (DIC) (right) images of the sphere array. Scale bar is 10 um. (b)
Corresponding emission spectrum. Excitation at 405 nm. (c) Standard total attenuation spectrum of Fmoc—Dip sphere array, taken using a UV—vis
spectrophotometer. The probe wavelength was scanned in the range of 200—1000 nm, and the total transmission was measured. (d) Absorption
spectrum of a Fmoc-Dip sphere array film, deposited on a quartz coverslip, measured by using an integrating sphere equipped spectrophotometer.

The wavelength was scanned in the range of 400—800 nm.

slide from a stock solution of 10 mg/mL Fmoc-Dip in EtOH were
obtained using a confocal microscope (Leica TCS SPS, Leica
Microsystems GmbH, Wetzlar, Germany), with a 40S nm diode
laser as the excitation source and a 63X, 1.4 NA oil immersion
objective. For the spectral measurements, an emission bandwidth of 20
nm was used in the range of 430—600 nm.

2.9. Optical Measurements. The UV—vis absorption measure-
ments were performed using a Hewlett—Packard HP845x vis—UV
spectrometer in the range of 500—570 nm. The integrating sphere
absorption measurements were performed using a commercial
PerkinElmer lambda 750 UV—vis—NIR setup equipped with a light
source (tungsten—halogen and deuterium), a conventional photo-
multiplier (PMT) detector, a 10 cm integrating sphere module
attachment, a monochromator, and a detector slit width of 10 nm. All
measurements were performed under standard ambient conditions.
Films were prepared by drop-casting the samples, dissolved in the
appropriate solvents, on the quartz/glass slide substrate. The
transmitted light was corrected using a reference of an empty quartz
coverslip of the same type and thickness as the substrate used for the
sample.

2.10. Optical Microscopy. Images were taken using a Nikon
Eclipse Ti-E inverted microscope. Large image was stitched at 10%
overlap of 24 X 31 individual X4 images. The controlled evaporation
rate was maintained using a controlled air pump and a H301-K-Frame
chamber from Okolab.

3. RESULTS AND DISCUSSION

As a minimal model, we studied the self-assembly of the
protected noncoded Fmoc-Dip amino acid (Figure 1a). Fmoc-
Dip was found to have very limited solubility in pure water yet
exhibits high solubility in ethanol (EtOH). This property was
utilized for triggering the self-assembly of the amino acid using
a solvent-switch method, whereby a concentrated Fmoc-Dip in
EtOH stock solution was diluted into water and the assembly
was monitored. Altering the self-organization conditions by
varying the EtOH/water ratio or the concentration of Fmoc-
Dip building block, dramatically affected the morphology of the
formed assemblies. Fmoc-Dip can form spheres, as well as
entangled fibrils or needle-like crystals, depending on the exact

solution conditions (Figures 1b and ¢ and S1). This typical
phase diagram is consistent with the organization of the
building blocks into supramolecular polymers and phase
organization as observed in model peptide systems.”****

Single-crystal X-ray diffraction (XRD) analysis of an
individual needle-like crystal revealed remarkable aromatic
continuity throughout the crystal packing (Figure 1d—f). In
addition, water molecules were incorporated in the unit cell,
forming a network of hydrogen bonds with the Fmoc-Dip
molecules. A central role for aromatic interactions and
hydrogen bonds is clearly demonstrated, similar to FF crystal
structure determined by Gorbitz.™ It was suggested that, under
aqueous conditions, a three-dimensional aromatic stacking
arrangement is achieved through interactions between planar
and rigid phenyl rings within the FF crystal. This arrangement
serves as a molecular adhesive (referred to as “aromatic glue”)
between the cylinder’s hydrogen-bonded main chains, signifi-
cantly stabilizing the structures.

Of the distinct morphological entities Fmoc-Dip formed
under different solution conditions, we observed the organ-
ization of an array of spherical assemblies upon drying of 10
mg/mL of Fmoc-Dip in pure EtOH. Atomic force microscopy
(AFM) analysis demonstrated that the spheres vary in size,
ranging from a few hundred nanometers to 2 ym in diameter
(Figure 2a). Interestingly, similarly sized spheres are mostly
found in close proximity to each other, resulting in areas
showing narrow sphere diameter distribution. Examination of
the formed array using optical microscopy revealed a vivid set
of colors at different areas of the sample. The colors were
mainly blue and orange, but also green, red, and purple areas
could be observed (Figure 2b). At higher magnifications, no
colors were visible, indicating that this opal-like coloration is
generated by the additive effect of several spheres within the
array and not due to an intrinsic property of a single sphere.
The virtual section of a tomogram and the constructed 3D
image obtained from a series of images recorded by scanning
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Figure 4. Correlation between sphere diameter and observed coloration. (a)b) Representative SEM micrographs of arrays exhibiting blue (a) and
orange coloration (b). Scale bars represent 10 ym. (c) Box plot displays of sphere diameter size distribution obtained by image analysis. The mean

value is annotated by a red star.

transmission electron microscopy (STEM) at different tilt
angles (Figure 2c—e and Videos S1 and S2) shows that the
particles are nearly perfect spheres and homogeneously solid. In
addition, powder XRD of an array of spheres reveals that the
spheres are amorphous and have no crystalline organization
(Figure 2f).

Next, we examined the fluorescent properties of the
individual spheres in further detail. For that purpose, we
deposited samples of a stock solution containing 10 mg/mL of
Fmoc-Dip in EtOH in small wells and allowed for their
evaporation. A confocal microscope coupled with spectrometer
was used to obtain the fluorescence spectra of these structures
(Figure 3a). On the basis of previously shown excitation of
similar fluorescent self-assembled protein structures,"® the laser
excitation wavelength was set to 405 nm and emission was
scanned in the range of 430—600 nm with a 20 nm bandwidth.
Several regions were clearly visible on the glass coverslip,
featuring spheres of different sizes, as observed using AFM
(Figure 2a). The emission spectra of all regions were similar,
featuring a peak at 520 nm.

We then investigated the absorbance of the Fmoc-Dip sphere
arrays employing two different methods of measurements. An
absorbance spectrum using a conventional UV—vis spectropho-
tometer was first obtained (Figure 3c), showing an attenuation
of the transmitted signal in the range of 500—570 nm.
However, this method cannot distinguish between pure
absorption and scattering that stems from the array itself. To
obtain absorbance spectrum that excludes scattering, we also
performed an absorbance measurement using an integrating
sphere spectrophotometer (Figure 3d). In both experiments,

the sphere arrays were produced as films, prepared by drop-
casting the samples on a quartz coverslip substrate (see
Experimental Section 2.9). According to the integrating sphere
absorbance measurements, a very weak absorption peak could
be observed at the range of ca. 400—420 nm, in agreement with
the fluorescence measurements using laser excitation at 405
nm. The pronounced scattering at the range of 500—570 nm is
in agreement with the colors observed with these sphere arrays.

We then aimed to investigate the structural differences
between distinct colored areas. For this purpose, areas of the
arrays exhibiting either blue or orange colors were studied in
detail by scanning electron microscopy (Figure 4a and b). From
the micrographs, it is clear that spheres at the blue areas are
larger than those at the orange ones. Image analysis confirms
that the mean diameter of spheres in the orange area is smaller,
and with a narrower size distribution (0.65 + 0.13 um), than
that of spheres in the blue area (0.77 + 0.22 um) (Figure 4c).
In both cases, the diameter of the spheres is within the scale of
visible light wavelengths. Taken together with the optical
properties portrayed in Figure 3, this analysis indicates that the
coloration of the sphere arrays results from Mie scattering, a
phenomenon describing the scattering of electromagnetic
radiation by particles of comparable size to the radiation
wavelength.”® According to the theory, light interacts with
spherical particles and the scattered light, both transmitted and
reflected, depends on the size of the scattering particles. This
phenomenon was demonstrated in inorganic materials, such as
wurtzite zinc oxide spheres of different sizes.”’ " To validate
the occurrence of Mie scattering by spherical particles at the
scale of the scattered wavelength, arrays of commercially
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available monodispersed polystyrene (0.46 and 0.8 ¢m) and of
silicon dioxide (0.5 and 1 pm) beads were similarly
investigated. Bright-field microscopy images show that beads
of diameters of 0.46 and 0.5 ym transmitted an orange color,
while the 0.8 and 1 ym beads transmitted blue colors (Figure
S2).

Because the particle size distribution at a certain area
determines the observed color, we aimed to manipulate the
distribution of sphere diameters by regulating the assembly
conditions. The assembly conditions may be regulated by
adjusting the temperature, humidity, molecular concentration,
etc, in order to achieve a desired size. As a proof of concept,
samples of Fmoc-Dip in EtOH were subjected to a constant air
flow in order to induce EtOH evaporation. By altering the
evaporation rate, a clear change in coloration was observed.
When EtOH evaporation was promoted, arrays exhibiting
orange coloration were prominent throughout the sample,
while blue coloration was abundant in samples that were not
subjected to active air flow (Figure S3). We assume that slower
evaporation allows molecules to continue the diffusion in
solution, thus organizing into larger spheres, resulting in blue
coloration. On the other hand, relatively fast evaporation
restricts the growth of the spheres, and thus orange coloration
is observed with smaller diameter assemblies.

4. CONCLUSION

In conclusion, we describe here the self-association of Fmoc-
Dip, a protected biaromatic single amino acid, into discrete
structural entities, and their resulting properties were
determined. Single-crystal XRD revealed the continuity of the
aromatic interactions within the needle-like crystal structure.
Altering the assembly conditions resulted in profoundly
different assembly morphologies, including an array of spherical
nanostructures, which displayed vivid opal-like coloration. We
suggest that the observed colors stem from the scattering of
polychromatic light, with dependency on particle size, whereby
different sphere dimensions lead to the scattering of different
wavelengths. The colors of the sphere array are sufficiently
intense to be observed by the naked eye. To our knowledge, we
investigate for the first time the self-assembly of a protected
biaromatic single amino acid. This dynamic assembly process
can be regulated with relative ease due to the simplicity of the
described system. This spontaneous process may give rise to
diverse morphological architectures and notable optical proper-
ties, with direct dependence on the assembly conditions.
Moreover, the current system may offer a partial direction for
coupling light emission into allowed Mie modes of a spherical
resonator, which is superior to doping or other current
techniques. Fmoc-Dip may be considered as a new member
of the short self-assembling building block repertoire, as it
further simplifies the assembling entity, while conserving the
biaromatic moiety.
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