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Abstract

Measurement of curvature of the flamefront of premixed turbulent flames is important for the
validation of numerical models for combustion. In this work, curvature is measured from
contours that outline the flamefront, which are generated from laser-induced fluorescence
images. The contours are inherently digitized, resulting in pixelation effects that lead to
difficulties in computing curvature of the flamefront accurately. A common approach is to fit
functions locally to short sections along the flame contour, and this approach is also followed
in this work; the method helps smoothen the pixelation before curvature is measured.
However, the length and degree of the polynomial, and hence the amount of smoothing, must
be correctly set in order to maximize the precision and accuracy of the curvature
measurements. Other researchers have applied polynomials of different orders and over
different segment lengths to circles of known curvature as a test to determine the appropriate
choice of polynomial; it is shown here that this method results in a sub-optimal choice of
polynomial function. Here, we determine more suitable polynomial functions through use of a
circle whose radius is sinusoidally modulated. We show that this leads to a more consistent
and reliable choice for the local polynomial functions fitted to experimental data. A
polynomial function thus determined is then applied to flame contour data to measure
curvature of experimentally acquired flame contours. The results show that there is an
enhancement in local flame speed at sections of the flamefront with a non-zero curvature, and
this agrees with numerical models.
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1. Introduction

To further the understanding of the behaviour of turbulent
premixed flames within various technical combustions
devices, fundamental understanding needs to be acquired from
experiments on a laboratory scale. The element of the flame of
greatest interest in such studies is the flamefront, comprising
a thin (usually less than 0.5 mm thick) region in the flame,
that separates reactants from the burnt products. The rapid
exothermic reactions between fuel and oxygen characteristic of
flames take place in the flamefront. In weakly turbulent flames,

where extinction is negligible, the flamefront is continuous in
space (Veynante and Vervisch 2002). Here we study weakly
turbulent flames, in which the flamefront adopts a distorted
(wrinkled) profile that evolves in time. It is this distortion
that leads to curvature of the flamefront and it is caused by
the presence of vortices within the turbulent gaseous mixture
of the flame. These vortices continuously rotate and translate
in space, and some impinge onto the flamefront consequently
wrinkling its configuration (Rutland and Ferziger 1991).

The significance of flamefront curvature arises because
it appears to have a profound effect on the overall reaction
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rate between fuel and oxygen. On one hand, curvature
leads to strain upon the flamefront (Veynante and Vervisch
2002), which in turn leads to an increased flame surface
area and hence a larger global rate of reaction. Curvature
of the flamefront also impacts on reaction rates through
induction of the thermodiffusive effect (Williams 1986). The
relationship between the local rate of burning and flamefront
curvature is governed by the global Lewis number (Le =
α/D), where α is the thermal diffusivity of the fuel–air
mixture and D is the binary mass diffusivity of the fuel in
nitrogen at inlet conditions (Law 1988, Rutland and Trouvé
1993); this dimensionless number plays an important role in
determining the behaviour of the flame. From an engineering
perspective, precise knowledge of the underlying phenomenon
affecting reaction rates is crucial, in order to optimize the
design of combustion units and better control their operability.
Numerical modelling, together with experimentation, plays
an increasing role in these efforts. The numerical models of
engineering utility, e.g., large eddy simulations (LES), make
assumptions to achieve closure of the governing equations
(Pitsch 2006). Reliable empirical data are required to refine
and validate these models, and this forms the motivation for
this study.

The effect of curvature on the local rate of reaction
has been subject of a previous experimental study by the
current group (Ayoola et al 2006). These efforts were based
on the simultaneous measurement of CH2O and OH radical
concentration distributions in a flame using planar laser-
induced fluorescence (PLIF). The measurements enabled the
flamefront to be reliably isolated, as well as a local resolution
of the rate of heat release (rate of reaction) at the flamefront
to be made; details of how these quantities were extracted are
outlined later in this paper. The correlations generated between
the local rate of heat release and curvature exhibited, however,
only a little negative correlation (if indeed any), which was
not in agreement with results obtained from direct numerical
simulations (DNS) of similar flames studied by Chakraborty
and Cant (2005) and Rutland and Trouvé (1993). In the work
of Ayoola et al (2006), curvature was computed directly from
the raw data of the experiments. The computations were
performed by first extracting the contour of the flamefront,
as delineated by the local maximum of the gradient of the
intensity in OH PLIF images of the flame, and then measuring
the curvature directly from the pixelated flame contours by
calculating the spatial first and second derivatives using the
discrete pixel-based coordinates of the flame contour.

Flame contours, thus obtained, are inherently pixelated
and their jagged profile requires smoothing to improve
precision of measured curvature, since the computation of the
second derivative is especially sensitive to pixelation-induced
noise. The smoothing can be achieved by employing either
Fourier spatial filtering (Gashi et al 2005, Chen 2007) or local
polynomial curve fitting (Kostiuk et al 1999, Shy et al 1999,
Renou et al 2000, Haq et al 2002, Soika et al 2003). Both
spatial filtering methods require tuning of their parameters to
control the degree of smoothing, such that curvature can be
computed with a minimal error. This is done by applying
the filtering algorithm to a pixelated theoretical test curve

and then varying the filtering parameters to minimize the
difference between measured and theoretical curvatures. The
test curve is a line that is defined by a theoretical function,
whose curvature can be obtained analytically. The measured
curvature is obtained by creating a pixelated representation of
the test curve. An important point is that this must be done
using pixels of a size corresponding to the projection of a
pixel of the camera used during the experiment onto the object
plane in the flame being imaged. Thus, the choice of spatial
filtering parameters depends on the spatial resolution of the
PLIF images; however they also depend on the properties of
the flame under study (subject to different levels of strain rate
and turbulence, for instance). To a certain degree the choice
can also be affected by experimental parameters, such as the
signal to noise ratio of the PLIF images and any artefacts
introduced by incorrect laser sheet profile corrections. Here,
we address one part of the problem in resolving curvatures
adequately in flamefronts by matching the type of polynomial
to the object being measured. For polynomial fitting, there is
currently no systematic method for choosing these parameters.
Test circles of various radii have been used, for instance (Haq
et al 2002). In this paper, we show how critically the final
accuracy and precision of the measured flamefront curvature
depend on the correct choice of test curve.

The aims of this work are to improve the accuracy
and precision of curvature measurements from digitized
flame contours by developing a more systematic method for
computing curvature using local polynomial curve fitting. The
contents of this paper are organized as follows. The details
of the original experimental setup of Ayoola et al (2006) are
briefly described here. The particulars of the polynomial fitting
method are then detailed. The results from the various test
curves’ parameters and their application to the flamefront data
are presented and discussed. The data of Ayoola are then
reanalysed using our improved methods and the improved
accuracy, and precision obtained demonstrates that indeed
correlations are present that were buried in noise by which
conventional methods are affected.

2. Experimental details

2.1. Burner system

An ethylene/air flame was stabilized on a counterflow burner
(Ayoola et al 2006), which is represented in figure 1. Flow
rates were regulated using mass flow controllers, to produce
a lean flame with equivalence ratio of φ = 0.55. Effects of
air entrainment near the edge of the flame were minimized by
the presence of a nitrogen coflow. The turbulent flame was
stabilized in the central plane between two opposing nozzles
using bulk gas flow velocities of equal magnitude. Turbulence-
generating grids and flow straighteners were used to create a
uniform turbulent velocity profile at the nozzle’s exit planes;
the combustor is similar to that described by Mastorakos et al
(1992). Three flow speeds were used in the study namely 2.4,
2.9 and 3.4 m s−1 corresponding to bulk strain rates of 137, 166
and 194 s−1, respectively. The flames were in the ‘wrinkled
and stretched flamelets’ regime and the highest strain rate
flames operated close to the extinction limit.
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Figure 1. Schematic of the counterflow burner cross-section.

2.2. Laser diagnostics

The PLIF images were generated using two Nd:YAG lasers
(Continuum Surelite), two dye lasers (Sirah CobraStretch) and
two high-resolution double exposure ICCD cameras (Lavision
Nanostar). The camera for imaging OH LIF was fitted with
a UV f/4.5 camera lens (Nikkor) with UG 11 and WG 305
filters (Comar) attached. The CH2O camera was fitted with
an f/1.2 camera lens (Nikkor) and GG 375 and SP 550 filters
(Comar). For OH LIF, the frequency-doubled output from one
dye laser was tuned near 283 nm to excite the Q1(6) line in the
A2�+–X2�(1,0) band. The frequency-doubled output from the
second dye laser was tuned to pump the peak of overlapping
transitions in the A1A2–X1A141

0 band of CH2O near 353 nm.
Further details of the experimental procedure are given by
Ayoola et al (2006).

3. Image analysis

3.1. Image preprocessing

The raw fluorescence images were preprocessed to reduce
noise by use of a median filter. The resulting filtered images
were normalized by the laser sheet intensity profiles. A
warping algorithm was then used to map the pixel coordinates
in the filtered OH images onto the corresponding pixel

locations in the CH2O images. This involved taking an image
of a test pattern with both cameras and applying a geometrical
transformation to one of the test images, using the reference
points in the other image as anchor coordinates. After
transformation, the Sobel edge detection algorithm (Vernon
1991) was applied to the OH PLIF images to create the flame
contour. The resulting flame contour is a line composed of
contiguous square pixels each with a size of 70 μm.

3.2. Curvature evaluation

The pixelated flame contour is the basis by which planar
curvature can be measured. Various methods of evaluating
curvature from the contour exist; the most basic way involves
evaluating curvature directly from the pixel coordinates (Nye
et al 1996, Ayoola et al 2006). This results in a poor estimation
of the spatial second derivatives used in the computation
of curvature, which are sensitive to the effects of pixelation
noise. Pixelation noise results from the approximation of the
true coordinates of the curve to the nearest pixel within the
pixel matrix. The unpredictable influence of pixelation can be
envisaged as introducing random noise to the representation
of the real continuous curve. To minimize this effect,
the pixelation noise is filtered to obtain an approximately
continuous coordinate representation.

In the present work, this filtering is performed by local
fitting of a polynomial curve of specified length and specified
degree to a sequence of adjacent pixels on the flame contour
surrounding a central pixel at which the curvature is to
be evaluated (Kostiuk et al 1999, Shy et al 1999, Renou
et al 2000, Haq et al 2002, Soika et al 2003). Each
locally fitted curve is pivoted at its central coordinate, and
has an equal number of curve-fitting points on either side. A
local least-square fit of the curve to the discretized points is
performed to produce the polynomial coefficients of the ‘best
fit’ curve, hence resulting in an analytical expression for the
locally fitted curve. Differentials of x and y with respect to
the curvilinear coordinate, s, can then be computed for the
subsequent estimation of planar curvature, κ , at the locally
fitted polynomial’s central pixel (see equation (1)). This
process of curve fitting and curvature evaluation is repeated
for every point along the flamefront contour:

κ =
dx
ds

d2y

ds2 − dy

ds
d2x
ds2[(

dx
ds

)2
+

( dy

ds

)2]3/2 . (1)

3.3. Polynomial testing

For accurate curve fitting the length and degree of the
polynomial segment must be carefully selected. Polynomials
of an insufficient length will imprecisely estimate curvature
when fitted to the flame contour, since pixelation noise
predominates. Conversely, an excessively long polynomial
curve often results in an inaccurate fit that smoothens
undulations of the flame contour, and hence consistently
underestimates curvature.

Tuning of the curve-fitting parameters can be achieved
using an analytical curve, which is then pixelated and fitted
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Figure 2. Representation of pixelation and lines of symmetry.

with polynomials, so that the theoretical and the measured
curvatures can be obtained; these values are then compared at
every point along this test curve. The difference between
the theoretical and measured curvatures at every point is
then evaluated to compare the errors resulting from different
types of polynomial segments. To ensure that the curvature
evaluation algorithm will measure curvature of a pixelated
flame contour with a minimal error over the curvature range
of interest, the test curve should possess a similar range of
curvatures.

Currently, no systematic method of tuning the two
parameters for polynomial curve-fitting exists. A simple
test case involving circles of various radii has been used,
for example, by Haq et al (2002). Unfortunately, the
circle, which has a fixed theoretical curvature, does not
realistically represent the undulating nature of a typically
contorted flamefront, which changes both sign and magnitude
in curvature. A further problem is that the circle has symmetry
such that there are eight octants that are pixelated identically,
as illustrated in figure 2. This means that only the pixels of
one octant of the circle are ‘symmetrically unique’ (i.e., pixels
with their centres that are uniquely offset from the underlying
theoretical curve, see figure 2). Each symmetrically unique
pixel has a unique value for the curvature measured at its
location by use of polynomial fitting, which differs from the
theoretical curvature due to the effects of aliasing.

In order to compare the effectiveness of different sets
of tuning parameters, we must evaluate, for each theoretical
curvature, the sample mean of the absolute offset between the
measured and theoretical curvatures over all the symmetrically
unique pixels in the test object (i.e., over one octant of the
circle). If there are too few symmetrically unique pixels,
then the sample mean does not represent a good estimation of
the mean that would be found with a much larger number of
symmetrically unique pixels. This leads to difficulties when
performing polynomial testing at higher curvatures using test
circles because small test circles have fewer pixels that are
symmetrically unique. The circular test case would hence

R

Ro

Figure 3. An example test rosette for a given set of parameters,
where A = 0.3Ro and B = 10.

not necessarily offer an accurate basis upon which to tune the
curvature evaluation algorithm for measuring curvature from
flame contours.

An alternative method for curvature algorithm testing,
referred to as the ‘rosette test curve’ herein, was conceived,
in order to improve upon circular test curves, which is best
expressed in polar coordinates, given by

R = Ro + A sin(Bθ) (2)

where

A � Ro, B ∈ Z
+ and 0 � θ < 2π.

Here, Ro is the mean radius about which R oscillates and A
is the amplitude of oscillation, with the constraint that B only
adopts positive integers. A plot of an example test rosette is
shown in figure 3.

This test curve formulation yields a continuous curve
with a cyclically repetitive pattern. The utility of this
curve is based upon its periodic elements being repeated in
different orientations relative to the rectangular grid of pixels,
consequently yielding slightly dissimilar pixelated shapes of
the elements. This random distorting effect of pixelation upon
the measured curvature for the test curve means that all of the
pixels are symmetrically unique; this is paramount for reliably
tuning the curve-fitting parameters. The rosette test curve also
has the advantage of a variation of theoretical curvature along
the contour and an alternation of curvature sign, which more
realistically represents the undulating nature of a flame contour
than the circular test curve.

Polynomial testing involves computing the theoretical and
measured curvatures at each point on the rosette curve. The
absolute value of the difference between the theoretical and
measured curvatures is then calculated for each point. The data
are then binned in terms of theoretical curvature, and for each
bin (of width 	κ i) the arithmetic mean of the absolute offset
between measured and theoretical curvature is determined,
denoted by δi. The polynomial order and length chosen results
from the smallest value of the mean offset (δ̄) over the range of
curvatures

(
κnbins − κ1

)
present in the flame under study, given

by the minimization with respect to the order and length of the
polynomial:

min
order,length

{
δ̄ = 1

κnbins − κ1

nbins∑
i=1

δi · 	κi

}
. (3)
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Figure 4. Bin-averaged absolute deviations from the theoretical curvature for (a) the circle test and (b)–(c) the rosette test.
Note: 7[3] denotes a third-order polynomial of half-length 7 pixels. L and H denote the low and high maximum curvilinear rates of change
of curvature of 2 and 6 mm−2, respectively. (d) Curvature-averaged absolute deviations from the theoretical curvature for the rosette test.

A range of rosette shapes was used as a basis for polynomial
testing; this was performed by setting the three parameters
A, B and Ro in the rosette formulation, so that the maximum
absolute curvature along the rosette was fixed to 1.5 mm−1

for all the test curves used here. This value was chosen to
roughly match the highest curvatures that were encountered in
the flame contours studied. Furthermore, the curvilinear rate
of change of curvature (dκ/ds) was computed. In general, this
parameter is also important in characterizing the shape of a
contour and the ability of curvature to be resolved properly
from its constituent pixels. In order to investigate the effect
of this shape-defining parameter on the choice of suitable
polynomial, a range of maximum absolute values of dκ/ds,
that are present at the extremely contorted points on the
test curve, were used in this investigation ranging from 2 to
6 mm−2.

3.4. A measure of laminar burning speed

Once the curvature evaluation algorithm had been tested with
various polynomials, it was applied to the flame contours,
derived from the HRR images, in order to compute curvature.

A quantity proportional to the local integrated rate of burning
was also computed by integrating the heat release rate profile
orthogonal to the flame contour. The integrated result has been
suggested to be directly proportional to the laminar flame speed
(Warnatz et al 1996):

SL = 1

ρdensYfuel

∫ τ/2

−τ/2
wlocal ds, (4)

where ρdens is the fuel mixture density, Yfuel is the fuel mass
fraction, τ is the flame thickness and wlocal is the rate of burning
per unit volume. This then allows experimentally obtained
correlations between the curvature in the image plane and the
local integrated heat release rate to be compared to correlations
between flame curvature and laminar flame speed obtained
from computational modelling.

4. Results and discussion

4.1. Polynomial testing results

Figure 4 shows three graphs of the arithmetic mean of
the absolute deviation from theoretical curvature against
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theoretical curvature and demonstrates how these relationships
predominantly depend upon polynomial length. Each data-
point in figure 4 represents the mean value of absolute
deviation within a curvature bin, whose width is 0.25 mm−1.
Figure 4(a) shows that the curvatures computed by applying a
second-order locally fitted polynomial of half-length 9 pixels
(denoted as 9[2]) to a series of test circles yields the smallest
deviation almost consistently out of all the possible polynomial
types that were studied. It should be noted that the three
plots shown are only a small selection of the large number of
polynomial types studied; this is to preserve graphical clarity.
Application of 6[2] polynomials to the test circles yields a low
overall deviation compared to other possible choices, however
it is seemingly outperformed by polynomial 9[2].

Figure 4(a) suggests that a common underlying trend
between absolute deviation and theoretical curvature exists for
all polynomial types, such that deviation increases with higher
curvature. This is expected because the fitting of polynomials
to smaller circles leads to poorer fits to the circle’s pixels; this
results in spatial averaging, which causes underestimations
of the true curvature. Furthermore, the trends for the three
polynomials in figure 4(a) become more erratic with increasing
curvature. There is a decrease in consistency between the three
trends for curvatures greater than about 1 mm−1, which is
due to the higher level of uncertainty present in the measured
curvatures associated with smaller circles. As discussed in
section 3.3, larger uncertainties exist in the averaged deviations
for smaller circles, because fewer values are used in the
computation of the average; this is the case as smaller circles
have fewer symmetrically unique pixels upon which to form
an unbiased average.

Figure 4(b) shows the results from applying five
polynomial types to a test rosette that was set with a maximum
absolute curvature of 1.5 mm−1 and a maximum absolute
curvilinear rate of change of curvature of 3 mm−2 along
its profile, whose values are a realistic range present within
the flame contours studied here. Figure 4(b) shows similar
underlying trends to that of the results from the circle tests,
in that deviation from true curvature increases with higher
absolute curvature due to the increase in spatial averaging.
There is a little scatter in the data in the curves of figure 4(b)
unlike for the circle test results in figure 4(a). The smoother
plots result from a smaller uncertainty in the average measured
curvatures from the test rosette. This is the case because the
test rosette used in this example was set with a large radius,
Ro, which generated a large number of repeating segments;
this results in the segments lying in many different locations
relative to the rectangular matrix of pixels. Consequently, each
point in figure 4(b) represents an average over data obtained
from a large number of symmetrically unique pixels.

Upon measuring curvatures on the rosette for a given
theoretical curvature, the average deviation (within a bin)
between measured and theoretical curvature can be estimated
from a significantly larger number of periodically repeated
points upon the rosette when Ro is large, in contrast to the
small number of repeated points using circle testing with high-
curvature small circles. A rosette with a larger radius, Ro,
results in a larger circumference, which can accommodate

many more repetitions of the periodic segments of the rosette;
this results in larger statistical confidence within the bin-
averaged curvatures.

A set of similar polynomial types exists that each yields
very similar deviations from the theoretical curvature, as
shown in figure 4(b) for that rosette test curve; these include
polynomials 7[3], 8[3] and 9[2]. However, polynomials of
appreciably different lengths, such as 5[3] and 15[3] in this
case, yield significantly larger overall deviations. For the
case of too short a polynomial, large deviations exist across all
values of theoretical curvature, as demonstrated in case 5[3] by
its flat profile. This is caused by the fitting of polynomials with
too few points, thus resulting in a larger scatter in the measured
curvatures, and hence larger absolute deviation. Overly long
polynomials do not suffer from pixelation noise, yet exhibit
larger deviations at higher curvatures, because the fitting of
long polynomials causes spatial filtering that results in high
theoretical curvatures being systematically underestimated.

Although it has been seen that there is a group of
polynomials with a similar length and degree that each yields
very similar levels of small deviation from true curvature in
figure 4(b), this is not the case in general. This has been
tested through the use of rosette test curves of different shapes
obtained by varying the maximum rates of change of curvature,
(dκ/ds)max. Figure 4(c) shows the variation of deviation
with curvature for the application of two polynomial types
to two test rosettes of different maximum values of dκ/ds of
2 mm−2 and 6 mm−2. These two rosettes both had the same
maximum curvature of 1.5 mm−1, but with different shapes
of the rosette, as determined by (dκ/ds)max. It was found that
two polynomial types, 7[3] and 9[2], which give reasonably
small deviations for a rosette with a maximum dκ/ds of
3 mm−2 (as for figure 4(b)), do not necessarily yield the same
results when applied to curves with different shapes. This
is demonstrated in figure 4(c), where polynomial 7[3] leads
to less overall deviation than 9[2] for nearly all curvatures
throughout the rosette with a higher maximum rate of change
of curvature. Conversely, 9[2] yields slightly less overall
deviation than 7[3] for the rosette with lower maximum rate
of change of curvature for all curvatures of interest in this
study (i.e., −1.5 < κ < 1.5 mm−1). Figure 4(c) suggests that
increasing the maximum value of (dκ/ds)max increases the
minimum deviation that occurs at zero curvature, and there
is an accompanying increase in the sensitivity of deviation
to curvature as shown by larger gradients in these plots. It
is seen that there is an increase in sensitivity to polynomial
choice with an increase in (dκ/ds)max, as reflected by the larger
differences between the profiles for the polynomials 7[3] and
9[2]. In light of these findings, it would thus always be wise
to perform preliminary computations to estimate the range of
curvatures and of rates of change of curvatures in the contours
under study by using an initial guess for a polynomial type
and length. This heuristic would then allow the test rosette
to be adapted to the appropriate shape, in order to refine the
choice of final polynomial length and degree to be used. In
this case, the polynomial 7[3] has been chosen for the purpose
of calculating curvature within the flame contours, as it has
shown to possess the lowest curvature-averaged deviation,
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Figure 5. Curvature distributions of the flame with a flow rate of 2.4 m s−1 for three polynomial types.

as calculated by equation (3). This result is shown in the
enlargement of figure 4(d), which shows that 7[3] is the best
choice in this case. This result highlights that the choice of
9[2] from the circle test is not suitable, hence demonstrating
the utility of the rosette test curve method.

4.2. Application to flame data

4.2.1. Curvature distributions. Figure 5 shows flamefront
curvature histograms for the flame with the lowest fuel mixture
flow rate of a bulk speed of 2.4 m s−1. The histograms depict
differences between the measured-curvature distributions of
the flame arising from the use of three polynomials: 5[3], 7[3]
and 15[3]. Polynomial 7[3] is a benchmark, as it was shown
to yield accurate measurements of curvature from the rosette,
as shown in figure 4(d). The effects of the other polynomials
upon the measured-curvature distribution are also shown.

The shape of the distributions for all polynomials is
symmetrical, and each one is centred at zero curvature; this
is consistent with the almost planar time-averaged profiles of
the flamefront in the counterflow burner. Yet, appreciable
differences exist between distributions using the benchmark
and the other polynomials. Use of polynomial 5[3] to compute
the curvature distribution, as shown by the grey line histogram
in figure 5(a), leads to a larger spread of curvatures with a 36%
increase in the standard deviation relative to the benchmark.
The increased spread is attributable to the effects of pixelation
noise. The pixelation noise is also considered to cause the
greater amount of noise in the distribution, as shown by the
peaks at curvatures of −0.6 and 0.6 mm−1.

The use of a larger polynomial, such as 15[3], to measure
flamefront curvature leads to a narrower distribution (35%
smaller standard deviation) as represented by the grey line
histogram in figure 5(b). This is due to the systematic
underestimation of curvatures by using a long polynomial.
These PDF plots thus demonstrate the importance of selecting
a suitable polynomial segment length in the evaluation of
flamefront curvature.

4.2.2. HRR correlations. Uncertainties in the estimation of
curvature have implications for the accuracy of the correlation

of integrated HRR with flamefront curvature. Figure 6 shows
four graphs of such a correlation: (a), (b) and (c) show plots for
the different polynomial types that were investigated for the
curvature evaluation algorithm testing. Graph (d) shows the
same correlated variables for the suitable polynomial choice
(e.g., 7[3]) for the three flames investigated. It should be noted
that each data-point in these plots represents the bin-average
integrated HRR. Each bin average was determined based on at
least 200 individual evaluations of curvature and heat release
rate. This avoids the random scatter in the correlation plots
that would result from a lack of sufficient data in each bin. The
positions along the curvature axis of each point, representing
the average HRR within a bin, are based on the centroid of the
scattered data within a bin along the curvature axis.

It is clear from figures 6(a)–(c) that other polynomials
such as 8[3] or 9[2] could, for example, have been chosen
since they lead to similar correlations. Polynomials 7[3], 8[3]
and 9[2] lead to very similar trends with a significant increase
in burning rate for negative curvatures.

It is apparent from figure 4(b) that an inadequately long
polynomial, such as 5[3], would yield a correlation within
figure 6 with lower gradients. This is due to short polynomials
being more sensitive to pixelation noise, and leads to a larger
spread in the curvature distribution. Conversely, for longer
polynomials, the HRR correlation is generally steeper due
to the tendency to systematically underestimate curvature.
It should be noted that for polynomial 15[3], the positive
curvature parts of the plots are irregular across figures 6(a)–(c)
and do not show an artificially steep gradient that would be
consistent with the left half of the plots. Specifically, it is seen
in figures 6(a) and (b) that the correlation for 15[3] reaches a
trough, for instance, which is offset from zero curvature. This
behaviour could be attributed to an inaccuracy in the integrated
HRR values, due to the direction of integration across the
flamefront not being perpendicular to the true flamefront
orientation. The direction of integration is governed by the
estimates made for the gradients, dx/ds and dy/ds, whose
accuracies are determined by the length and degree of the
polynomial. As an example, figure 7 portrays a schematic of
the least-square best fit of a long polynomial that is centred at a
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Figure 6. Correlations of integrated HRR with flamefront curvature. Plots (a), (b) and (c) show comparisons between five polynomials for
the three flames characterized by flow speeds of 2.4, 2.9 and 3.4 m s−1, respectively. Plot (d) shows the correlations for the best choice of
polynomial.

point of inflection, as denoted by the superimposed pivot point
on the HRR image of a flamefront. Cross-sections 1 and 2 are
examples of paths of integration across the flamefront, which
are always aligned to the local normal of the polynomial. The
accompanying dashed lines, which represent the flamefront’s
orthogonal, portray the potential for disparities between them
and the direction of the integration paths.

A possible reason for the unpredicted lowering of the
right half of the 15[3] plots of figures 6(a)–(c) is based on
the following argument. If a polynomial that is pivoted at
the flamefront’s point of inflection is too long, the least-
square best fit to the neighbouring pixels does not provide
an appropriate path for integration across the flamefront, as
shown by integration path 1 in figure 7. This will always lead
to overestimation of the true integrated HRR values across
the flamefront. However, for regions of the flamefront with
a higher magnitude curvature, the path lengths for integration
are perpendicular to the flame contour, as would be found
from a polynomial fitted around position 2 in figure 7.
Consequently, this effect raises the integrated HRR values
at zero curvature, relative to the higher magnitude curvatures.
Once the plot for the overly long polynomial is normalized by
this larger integrated HRR value at zero curvature, the curve
is shifted downward relative to the correlations based on more

Figure 7. Schematic of the fitting of an overly long polynomial to
an HRR-based image of a flamefront with the associated
HRR-integration paths 1 and 2.

appropriate polynomials, thus contributing to the lowering of
the right-hand section of the plot.

4.2.3. Physical effects. Figure 6(d) displays the correlations of
local integrated HRR with flamefront curvature for a choice of
polynomial 7[3] for all three flames with bulk flow speeds
of 2.4, 2.9 and 3.4 m s−1. It is seen that for the three
flames there is a significant increase in burning rate, which
is proportional to integrated HRR, with increasing magnitude
of negative curvature and a less strong increase in burning
rate with increasing positive curvature. These results concur
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with the correlations obtained from numerical simulation by
Chakraborty and Cant (2005) for lean methane/air Le =
1.2 flames. In these theoretical studies, a bivariate PDF
was also found to exhibit both a strong increase in the
reaction component of flame displacement speed (i.e., Sr)
with decreasing negative curvature and a smaller increase in Sr

with increasing positive curvature. Rutland and Trouvé (1993)
predicted similar behaviour for a lean methane/air Le = 1.2
flame, for negative curvatures, although correlations from
their numerical simulations showed no noticeable increase in
burning rate for positive curvatures.

A possible reason for the shape of the correlations is the
thermodiffusive argument put forth by Williams (1986). The
flamefront diffusion of heat from the burnt gases towards the
incoming reactants takes place at the same time as the fuel
within the reactants diffuses towards the flamefront. When
the flamefront is curved this causes the diffusive flux of heat
to focus (defocus) at the flamefront regions concave (convex)
to the reactants, whilst the diffusive flux of fuel defocuses
(focuses) at the concave (convex) regions. For the case
of the concave region, the focusing of heat is conducive to
locally increasing the temperature of the unburnt fuel mixture
close to the flamefront and hence raises the local rate of
reaction. However, the defocusing of the fuel diffusion
towards the flamefront in concave regions tends to reduce the
concentration of fuel close to the flamefront. It is postulated
that the two effects compete and hence the balance between
them determines the relationship between local integrated heat
release rate and the curvature of the flamefront. Moreover,
the balance of these two effects can be skewed by the global
Lewis number, Le, which is defined as the ratio of the thermal
diffusivity of the fuel–air mixture to the binary mass diffusivity
of the fuel in nitrogen at inlet conditions. When the thermal
diffusivity is greater than the mass diffusivity (i.e., Le > 1) the
effect of the focusing (or defocusing) of heat is more important
than that of fuel diffusion effects, and thus it would be seen
that concave regions of the flamefront would exhibit a higher
integrated heat release rate than its convex neighbours.

Nevertheless, there are limitations to the interpretations
of figure 6(d), because of the correlation of burning rate
with flamefront curvature that is measured only in two
dimensions. The real flame surface requires two components
of curvature to fully characterize its topological profile in three
dimensions. This fact implies that quantification of the relative
enhancements of burning for the negative curvatures should not
be trusted entirely. It would be expected that the correlation
of true curvature with the burning rate would exhibit a
stronger enhancement of burning for negative curvatures,
when compared with the correlations of figure 6(d). This
is exemplified by the correlations of Chakraborty and Cant
(2005), where they use mean curvature (κm) as a measure of
flame surface contortion, that show gradients for the negative
curvatures in their correlation to be double that of figure 6(d).
A more uniform correlation would be expected for burning
rate with a two-dimensional curvature (κ) because for each
of the measured curvatures herein there would have been an
associated curvature in the direction perpendicular to the laser
sheet. For example, a strong curving of the flame surface

could exist out of the measuring plane, yet would appear to
be flat in the HRR images of the flamefront, which results
in an enhancement for zero curvatures in the correlations of
figure 6. This would result in larger burning rates for zero
curvatures relative to that for negative curvatures, hence a
levelling of the correlation.

5. Conclusions

An improved method for the computation of a two-
dimensional curvature and its application to turbulent
premixed flame correlations has been developed and tested
in this study. It has been shown that use of a circle as a test
curve for tuning the parameters of the curvature evaluation
algorithm does not reliably yield the best choice of polynomial
type. The rosette test curve method, whose development is
reported here, was shown to perform more effectively, and to
consistently allow the selection of an appropriate polynomial
for smoothing the pixelated flame contour.

A problem of the circle as a test curve is that its symmetry
causes only one octant to possess pixels that are symmetrically
unique. This leads to problems when investigating high
curvatures since for the corresponding small circles there will
be very few unique pixels. Furthermore, employing the rosette
test curve allowed for the setting of the maximum curvilinear
rate of change of curvature (dκ/ds)max that occurs along the
contour, which is, however, undefined for circle test curves.
This extra degree of freedom enabled the effect of (dκ/ds)max

upon the choice of suitable polynomial to be studied. It
was found that curves with larger (dκ/ds)max exhibit larger
sensitivity of curvature measurement accuracy to the choice of
polynomial.

For the irregularly distorted flame contours investigated,
a group of polynomial types was found to yield very similar
results for the rosette testing performed. Furthermore,
application of this group of polynomials yielded very
similar correlations of burning rate with flamefront curvature,
thus supporting the fidelity of the rosette testing results.
Further to the predictable effects of polynomial length upon
the distribution of measured curvatures, whereby shorter
polynomials yield wider distributions and longer polynomials
tend to smoothen the undulating flame contour, longer
polynomials also seemed to lead to distortions to the true
underlying relationship between local integrated HRR and
flamefront curvature. This distortion is suspected to be due
to systematic errors present in the values of integrated HRR
due to the use of overly long polynomials, which can lead
to a systematic overestimation of HRR due to inaccurate
identification of the direction normal to the flamefront.

Finally, qualitative agreements were found between the
experimental correlations reported here and the behaviour that
would be expected based on the thermodiffusive argument, in
addition to the DNS results within the literature.
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