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The application of nonlinear anisotropic diffusion filtering to reduce noise and enhance contours in images ob-
tained by two-dimensional planar laser-induced fluorescence (PLIF) spectroscopy is presented. In this process
the diffusion coefficient is locally adapted, becoming negligible as object boundaries are approached. Noise is
efficiently removed, and object contours are strongly enhanced. The technique is demonstrated with PLIF
images obtained from the OH radical recorded in turbulent flames. We show that nonlinear diffusion is suit-
able as a preprocessing step, before image segmentation becomes possible, and we demonstrate how the tech-
nique is applied for the quantitative extraction of flame reaction boundaries from PLIF data. © 2000 Optical

Society of America [S0740-3232(00)03612-7]
OCIS codes: 100.2000, 300.2530, 280.1740.

1. INTRODUCTION

Two-dimensional laser spectroscopic imaging has become
one of the most valuable tools in the study of the physics
and chemistry of turbulent reactive flows.! A variety of
spectroscopic  techniques are available for two-
dimensional imaging of relevant scalars in combustive
flows: Raman spectroscopy,”? Mie scattering, Rayleigh
scattering,® and laser-induced fluorescence®® have all
been applied in a two-dimensional fashion in these envi-
ronments. These techniques have in common that a suit-
able, high-power laser beam is shaped into a planar sheet
that cuts through the measurement volume of interest.
The laser light is scattered by particles present in the
measurement volume and is captured at right angles by a
suitable camera (see Fig. 1). By a suitable choice of laser
wavelength and other parameters, one is able to measure
the concentrations of chemical species present in the
flame environment, the flame temperature, the flow char-
acteristics, etc. By use of high-power laser sources with
short pulse lengths (of the order of 10~8 s), this informa-
tion can be obtained practically instantaneously on the
chemical and physical time scales prevailing in combus-
tion systems. Such data are valuable for improving the
understanding of combustion processes and in the quest
to design cleaner, more efficient combustion devices. An
overview of spectroscopic applications to combustion diag-
nostics is given in Ref. 6.

Laser-induced fluorescence is of particular importance
in this context, since it is the only technique with the sen-
sitivity required for making concentration measurements
of radical species that are produced in situ during the
combustion process and are only present at trace levels.
Of particular importance in this context is the OH radical,
since it occurs in all systems in which air is used as an
oxidizer. The local OH concentration is a good indicator
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of the efficiency of the combustion process, since it is sen-
sitively dependent on the local flow field properties.” Re-
cently the evolution of OH concentration fields in a flame
with shear flow-generated turbulence was visualized in
real time in a filmlike manner® by use of planar laser-
induced fluorescence (PLIF). The effects of convective
stress on the flame front and local fuel—air mixing on the
flame could be tracked in real time by these measure-
ments. The PLIF spectrometer used for this work is
unique in terms of the temporal and spatial resolution at-
tainable. However, its dynamic range is limited to an
8-bit resolution, and in a typical experimental situation
the signal-to-noise ratio and contrast-to-noise ratio are
therefore limited. For example, Fig. 2B shows a low-
quality raw image obtained by OH PLIF in a turbulent
flame. For quantitative comparison with results ob-
tained from theoretical calculations of the combustion
system, some form of post-image-processing for quantita-
tive data extraction is necessary. Usually this involves
local averaging over noise or the enhancement of image
contours. Simple smoothing techniques work by low-
pass filtering, which removes the noisy high-frequency
components from the image. Unfortunately, this results
in image blurring and degrading of edge information.
This can be partly overcome by nonlinear filters (median
filtering), which preserve edges but compromise fine-scale
resolution.

The present paper reports the application of a local an-
isotropic diffusion filter for the enhancement of PLIF im-
ages. In the present case the application was developed
to allow the quantitative extraction of flame contour data
from OH images obtained by the 8-bit detector system de-
scribed, but the method is generally applicable to all two-
dimensional laser imaging techniques. It is adapted
from an approach originally formulated by Perona and
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Fig. 1.

Fig. 2. A, Photograph of line-of-sight flame emission from a turbulent nonpremixed flame.

Flame

Schematic setup of planar laser light-scattering techniques.

The area imaged by the PLIF experiments

is indicated by the white box, corresponding to 24 mm X 23 mm, starting 40 mm above the burner nozzle B, PLIF raw image showing

two-dimensional OH-radical concentrations in a cut through the flame.

of the flame front is strongly enhanced.

Malik.? The method has several advantages: Noise is
smoothed locally within regions defined by object bound-
aries, whereas little or no smoothing occurs between
image objects. Local edges are enhanced because discon-
tinuities, such as boundaries, are amplified. Mathemati-
cally one treats the problem as a diffusion process, where
the diffusion coefficient is adapted locally to the effect

C, PLIF image after nonlinear diffusion filtering. The position

that diffusion stops as soon as an object boundary is
reached. Local noise is efficiently removed, and object
boundaries are enhanced.

The paper is organized as follows: In Section 2 a brief
description of the technique and its computational imple-
mentation is given. In Section 3 examples are given to
visualize how the method is optimized for a given appli-
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cation, and the technique is then applied to find flame
contours from two-dimensional PLIF images obtained in a
turbulent diffusion flame. The particular objective was
to find flame boundaries and to calculate contour lengths
and areas from OH radical distributions. Practical as-
pects concerning the technique in the context of the
present application will be discussed. Finally, Section 4
summarizes the paper and highlights advantages of and
problems with the technique.

2. THEORY

A. Nonlinear Diffusion

We define an image as a function u on R2, where u(x) rep-
resents the gray level or intensity at point x. A tradi-
tional way to smooth an image in a controlled way is to
convolve it with a Gaussian kernel:

1
Gola): = 27o?

exp(—|x|%/202), (1)
where o determines the width of the kernel. By “con-
trolled,” one means that the smoothing, or low-pass filter-
ing, fulfills some natural requirements, such as invari-
ance under rotations, translations, and constant shifts in
the gray scale. Another requirement is that the smooth-
ing not create false structure in the image; that is, the
process should not create new local extrema. It is a clas-
sical fact that the solution of the linear diffusion equation

du = div(dVu), (2)

where d is a scalar constant, for time ¢ is exactly the same
operation as convolving the image u with a Gaussian ker-
nel of width 2¢.

In the current application we are interested in finding a
good approximation of the contour of an object in a noisy
image. Smoothing with a Gaussian kernel will help to
suppress noise, but it will also blur and dislocate edges
and contours. In Ref. 9 Perona and Malik proposed to ex-
change the scalar diffusion constant d in Eq. (2) for a
scalar-valued function g of the gradient Vu of the gray
levels in the image. The diffusion equation then reads as

du = div[ g(|Vu|)Vu]. (3)

The length of the gradient, |Vu|, has been empirically
proved to be a good measure of the edge strength of the
current location and expresses a dependence on the dif-
ferential structure of the image. This dependence, of
course, makes the diffusion process nonlinear. The func-
tion g is required to be smooth and nonincreasing with
g(0) =1 and g(s) — 0 for s — .

Using the alternative so-called gauge coordinates 7 and
£, where 7 is the normalized direction parallel to the gra-
dient and ¢ is the normalized direction orthogonal to the
gradient, the right-hand side of Eq. (3) can be rewritten
as

div[g(|Vu|)Vu] = g(|Vu|ug + @' (|Vu|u,, 4

where ®(|Vu|) = [Vu|g(|Vu|) and u4 and u,, are the
second derivatives in the directions ¢ and 7, respectively.
For a detailed derivation of relation (4), see Ref. 10. In
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this new form it can be seen that the coefficient ®'(|Vu|)
before the term u,, governs diffusion across edges.

As diffusivity function g we use a function originally
proposed by Weickert!! in a similar setting. In the
present case this function was found to be optimally
suited to the properties of the PLIF images recorded by
our camera. Weickert’s diffusivity function reads as

_Cm
(s/\)™

g(s) =1 — exp . (5)

Here, m is a positive integer, C,, > 0, and N\ > 0. The
constant C,, is chosen in such a way that the flux function
®(s) is increasing for s < \ and decreasing for s > \.
That is, ®'(s) > 0 when s < A\, and ®'(s) < 0 when s
> \. In this way the diffusion in the direction across the
edges will be a forward diffusion when |[Vu| < \ and a
backward diffusion when |Vu| > \, and the slopes at the
edges will increase. The parameter \ acts as a contrast
parameter that separates regions where forward diffusion
occurs from those where backward diffusion takes place.

Function (3) is apparently rather unstable and sensi-
tive to noise because of the backward-diffusion properties.
This makes the stability of the solutions of the equation
strongly dependent on the regularizing effect of the dis-
cretization and numerical implementation. Therefore it
seems natural to introduce a controlled regularization di-
rectly into the continuous process. Catté et al. in Ref. 12
proposed to smooth the gradient inside the diffusivity and
replace g(|Vu|) with the estimate g(|V(G,*u)|), where
G, is a Gaussian kernel of width 0. That is, they propose
the following diffusion equation:

du = div[ g(|V(G*u)|)Vu]. (6)

The model of Catté et al.'? has the advantage that it is in-
sensitive to noise at a scale that is determined by o.
Therefore it does not misinterpret noise as edges that
should be enhanced. This makes Eq. (6) much more
stable than Eq. (3).

B. Numerical Implementation

Good results can be obtained with rather simple discreti-
zations of Eq. (6). The discretization used for the ex-
amples shown in this paper is based on central finite dif-
ference approximations of the spatial derivatives with
reflecting boundary conditions. The step sizes Ax and Ay
are both set equal to 1. For the differentials in the x and
the y directions, respectively, one has

Uivl; — Uj-15
duttyj = ——— (7

Ujj+1 — Ui j-1
i = = (®)

The difference calculations can be implemented by multi-
plication with sparse matrices, offering a substantial im-
provement in computational speed. One has d,.u = uX
and d,u = Yu, where X and Y are the sparse forms of



Malm et al.

[0 -1 0 |
0 -1
110 1 0
X=—- . ,
2
0 -1
I 0 |yun
[0 1 0 0 0]
-1 0
110 -1 0
Y—E .
0 0 0 .. 0
0 0 0 ... -1 0], .

9

Here N represents the number of discrete points (pixels)
of u along the x axis and M is the number of pixels along
y.

To iterate 1 time step, one starts by calculating G, * u
and proceeds by differentiating the result. An approxi-
mate solution of |V(G,* u)| is thereby obtained. The
function g[|V(G,* u)|] is then evaluated at all discrete
points, and finally u is updated according to

u" = w1+ At[(g - au" HX + Y(g - dut )] (10)

Here g - d,u” ! denotes elementwise multiplication of
the matrices g[|V(G,* u" Y)|] and 9,u" L.

The time step At has to be chosen carefully for the pro-
cess to be stable. Calculations of an upper bound for sta-
bility in similar settings'® suggest A¢ = 0.2 as an appro-
priate choice, but simulations using the current
discretization have shown that in practice we can obtain
stable solutions by using time steps as large as At
= 0.8.

The explicit scheme explained here is, of course, very
basic, and because of the restriction in the size of the time
step it can be rather time consuming. More advanced
numerical methods should be well suited for improving
the efficiency of the current filtering scheme. Among
these are the use of adaptive grid finite elements,'* semi-
implicit schemes based on additive operator splitting,'®
and parallel implementations.®

3. RESULTS AND DISCUSSION

A. Planar Laser-Induced Fluorescence Imaging of OH
Figure 2B corresponds to an example of a low-quality OH
PLIF image obtained in the turbulent diffusion flame dis-
played in Fig. 2A. It represents a two-dimensional cut
through the region of the flame indicated by the rectan-
gular box. Similar measurements have been used by the
present group to study turbulence chemistry interactions
and have been the subject of other publications.®17 For
comparisons with model calculations of such flames it is
necessary to extract information such as contour lengths
and areas from such data. Nonlinear diffusion was used
to enhance the images before extraction of these param-
eters.
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The PLIF image shown in Fig. 2B is an 8-bit image
with a size of 261 pixels X 241 pixels, corresponding to a
region of 24 mm X 23 mm in the flame, starting 40 mm
above the burner nozzle. The PLIF image shown in Fig.
2B corresponds to raw data from which a nearly constant
background level has been subtracted and which has been
compensated for laser beam profile variations. Details of
the beam profile compensation scheme are given in Ref.
18. Apart from this the image is unprocessed.

A main goal of the current research is to extract infor-
mation about the position of the so-called flame front,
which is where chemical reactions in the flame are taking
place. As a good approximation, the flame front lies close
to the region where the maximum gradient of the OH con-
centration lies.!”

In the PLIF image the OH concentration gradients are
not perfectly sharp, owing to a limited detector resolution
caused by imperfect imaging and cross talk between pix-
els and also owing to physical phenomena such as convec-
tive and diffusive mixing of OH with ambient gases.
Since the production terms for OH are highly nonlinear in
nature and are strongly temperature dependent, there
are also large gray-scale variations (and associated gradi-
ents) within regions where OH occurs. Also, there are
high levels of noise present, which can be attributed to
several sources: scattered stray laser light that enters
the detector, noise stemming from the signal amplifica-
tion process in the image intensifiers of the camera, and
noise associated with the CCD devices in the camera.
These properties make it difficult to identify the flame
front directly with other conventional methods, such as
thresholding or Canny—Deriche edge detection.

B. Properties of Nonlinear Diffusion

In this section some of the properties of the nonlinear dif-
fusion approach described here will be demonstrated by
application to a number of artificially generated one-
dimensional test curves. These test curves simulate
characteristics expected in real experimental situations
using the PLIF system mentioned above. The behavior
of the filtering technique for images containing gradient

intensity

Fig. 3. Sharpening of an edge by nonlinear anisotropic diffu-
sion. The plot shows the evolution of a noisy, blurred step func-
tion during 25 computational iterations. Clearly the edge is
strongly enhanced, while noise fluctuations are effectively
smoothed out by the process.
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variations as well as variations in signal-to-noise ratios
can be visualized in this way. This part of the paper also
explains the issues regarding the optimal adaptation of
the technique to a given experimental situation.

The basic properties of the process are exhibited in Fig.
3. It shows the progressive filtering of a blurred, noisy
edge, which was generated by an error function and to
which white noise was added. The edge intensity varies
between 0 and ~250, corresponding to the dynamic range
of the present camera system. The standard deviation of
the noise was 7.5% of the peak intensity of the error func-
tion. Weickert’s diffusivity function [Eq. (5)] was used in
Eq. (6), with m = 8, C,, = 3.315, A = 15, and o = 1.
After only 25 computational iterations the edge is
strongly enhanced, although its position is unaffected.
At the same time the noise is effectively removed.

Physically one can picture the diffusion process as ap-
proaching the one-dimensional edge from both directions
without actually crossing it. In the process noise is aver-
aged out, and, given an appropriate diffusivity function,
the edge may be sharpened at the same time. Because in
the present application the position of the edge contour is
of interest, this edge enhancement is a highly desirable
feature, and Eq. (5) has proved to be very effective to this
end. Note, however, that other functions may be chosen
for g(s) if this edge sharpening effect is not desirable.

To see which edges are preserved during the process, it
is useful to define a flow ®(Vu) = g(|Vu|)Vu and to plot
® against the gradient'® Vu. In Fig. 4 this is shown for
three different diffusivity functions. The two dotted
curves correspond to functions originally proposed by Pe-
rona and Malik,? whereas the solid curve corresponds to
Eq. (5) for m = 8. All three curves are plotted in terms
of N\ and are normalized to effect maximum flow at A
= 1. Areas are normalized to unity. The principal be-
havior is the same for the three functions: Diffusion is
rising to a maximum near N\ = 1 and then falling off
again for gradients Vu > 1. In a given situation one
must choose a parameter set for which the flow ®(Vu) is
a maximum for the gradients exhibited by noisy features
and a minimum for the edges that must be preserved.
Weickert’s function, for m = 8, is the most selective of the
three, peaked sharply around A\ = 1. The flow of Weick-
ert’s diffusivity function for lower m values is less sharply
peaked and more closely resembles the ones proposed by
Perona and Malik. In the present case Weickert’s func-
tion for m = 8 was found to match the noise characteris-
tics of the detector in an ideal way (the noise spectrum re-
sembled a normal distribution in the present case). This
means that good results can be achieved after relatively
few iterations (typically 100 iterations or less for a given
PLIF image; see subsection 3.C). A drawback is that the
approach becomes more sensitive to the proper choice of A
and is numerically less stable than the other two func-
tions shown in Fig. 4. Much of this instability is pre-
vented by use of the smoothed kernel as shown in Eq. (6).
In practice we find that good results are achieved if \ is
set to ~70% of the minimum edge strength that we wish
to preserve and a o within the interval 0.5-1 is used.
Figure 5 shows the behavior of different terms appearing
in Eq. (6) when a noise-free but blurred edge is used.
Figure 5 is an aid to qualitative understanding of the
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edge-sharpening process. Figure 5A shows the edge
function u after n equal to 1, 10, and 100 computational
iterations. The gradual steepening as n increases is
clearly exhibited. In Fig. 5B the gradient Vu is plotted.
This shows quantitatively how the gradient in u becomes
steeper in time. Finally, Fig. 5C displays the rate of
change of the gradient, ¢,Vu. Initially one can see that
the largest rate of change occurs at the point where the
gradient Vu is largest. d,Vu is positive here, so the edge
increases its sharpness. Simultaneously there are two
negative lobes in ¢,Vu to the left and to the right of the
center peak, giving the effect that the slope of u is flat-
tened at these positions, which is reflected in Fig. 5A. At
n = 10, 4,Vu has reached a maximum near the center.
In contrast, the sidelobes are decreasing again in magni-
tude, indicating that edge diffusion is slower there than
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Fig. 4. Graph displaying the diffusive flow g(|Vu|)Vu for three
different diffusivity functions g as a function of the edge
strengths Vu/\ in the image. The functions are, a, the function
used in this paper [Eq. (5)], g(s) = 1 — exp[—C,,/(s/\)®] and, b
and ¢, two functions originally proposed by Perona and Malik,
g(s) = 1/[1 + (Js|/\)?] and g(s) = exp[—(|s|[/\)?], respectively.
All three curves are normalized to unity area with maximum
flow occurring at Vu = \.
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Fig. 5. Behavior of an edge propagating through the diffusion
filtering process. The evolutions of A, u; B, Vu; and C, 9,Vu are
shown for n equal to 1, 10, and 100 iteration steps, respectively.



Malm et al.

A B
100 N 40
20 ‘
3 50 g 0 J\-V—/\/\/\/
-20
-40
00 40 80 120 160 200 0 40 80 120 160 200
pixel number pixel number
C D
100 40
80 20 l l
=60 F 0 ' —_—
40 D_go ' l '
20 -40
0 40 80 120 160 200 0 40 80 120 160 200

pixel number pixel number

Fig. 6. Illustration of the gradient-selective behavior of the dif-
fusion process. A, Unprocessed periodic function u; B, its gradi-
ent Vu. Function u contains a large range of gradients, succes-
sively decreasing for each period. C, Filtered function ug; ; D, its
gradient Vug, . It can be seen that the peak with the lowest gra-
dient (the rightmost peak on in graph A) is not retained in the
filtered image. All other gradients are strongly enhanced.

initially. Finally, at n = 100, diffusion has virtually
come to a standstill over the entire region shown, al-
though a minute amount of steepening is still active near
the center of the graph. From this time on nothing much
is gained by a continuation of the process. In practice,
therefore, one should balance the degree of smoothing and
sharpening that one wishes to achieve with the associated
computational cost (number of iterations required to
achieve the task). We found that n = 150 was sufficient
for all measurement situations that we encountered.
Note, however, that there is no rule, in principle, govern-
ing the maximum number of iterations, although numeri-
cal rounding errors will ultimately lead to a uniform in-
tensity distribution in the limit n — oo.

Figure 6 displays the gradient selectivity of the
method. In Fig. 6A a function u is shown, consisting of a
series of steps with equal periods (40 pixels) but decreas-
ing edge gradients. The gradients corresponding to u are
shown in Fig. 6B. Figure 6C shows ug, which is the
same function after filtering for 25 iterations; in Fig. 6D
the gradients corresponding to the filtered function are
shown. In this example, all gradients are strongly en-
hanced except for the last feature shown, the gradient of
which is too low to be preserved by the filtering process.
The sizes of gradients preserved are governed by the
shape of g in Eq. (6), and are strongly dependent on the
value of the contrast parameter N\. In the present case
N = 6.4 was chosen. A smaller A would have enhanced
all features in the process. In a practical situation one
has to adapt A to the physical situation prevailing, and it
is clear that the method will fail if the gradients of the
structures that one wishes to preserve are similar to a
significant part of the gradients present in the noise spec-
trum.

The performance of the method in the presence of vari-
ous degrees of noise is seen in Fig. 7. Again a series of
structures is shown with a period of 40 pixels and a nomi-
nal amplitude of 100 counts (on top of a dc level of 100

Vol. 17, No. 12/December 2000/J. Opt. Soc. Am. A 2153

counts). The standard deviation of the noise added to
each peak (from left to right) is 0, 10%, 20%, 30% and 40%
of the maximum signal amplitude. It can be seen that
the maximum gradients in the original function are al-
most completely restored, despite the severe noise levels
present.

In a given experimental situation the best choice of A
can be obtained by a spectral analysis of the gradients
present in the noise and by adapting g(Vu, \) to maxi-
mize diffusion over the noise components while preserv-
ing the frequency components corresponding to edges that
one wishes to preserve. An example of this is shown in
Fig. 8, which corresponds to a function of the type dis-
played in Fig. 7. Figure 8A shows the gradient of the
original, noise-free periodic function, and Fig. 8B shows
its gradient spectrum, upon which the flow function
g(|Vu|)Vu is superimposed. Figure 8C shows the gradi-
ent of the line image corrupted by increasing amounts of
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Fig. 7. Filtering of periodic structures with increasing degrees

of white noise added and consequently decreasing signal-to-noise

ratios. A, Unfiltered function u; B, its gradient. C, After filter-

ing, the features of the original periodic function are restored and

enhanced (ug); D, the corresponding gradient.
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Fig. 8. A, Gradients Vu of an unperturbed periodic structure u;
C, gradients V(z + noise) of the same structure with increasing
levels of noise added (analogous to Fig. 7); E, gradients V(ug) of
the filtered structure. B, D, and F, Corresponding histograms of
the gradient distributions. The magnitude of the flow
| g(Vu)Vu| as a function of Vu is superimposed on the histogram
to help visualize which gradients are preserved by the process.



2154 J. Opt. Soc. Am. A/Vol. 17, No. 12/December 2000

2200 A
g 100 M
£ o
0 50 100 150 200 250
pixel number
2200 B
£ 9
0 50 100 150 200 250
pixel number
2200 c -
§ 100 _’__/—\—/—\_}—\\_
£ 0 -
0 50 100 150 200 250
pixel number
2200 D -
é 100;_—’}\—’.\_]_1‘-
£ 0

0 50 100 150 200 250
pixel number

Fig. 9. Effects of the contrast parameter A\ on the retainment of
image structure during nonlinear diffusion filtering. The line
profile shown corresponds to the pixel row indicated in white in
Fig. 2B. A, Raw intensity profile; B, C, and D, filtered profile for
\ equal to 3, 5, and 7, respectively.

white noise. Figure 8E shows the gradients in the noisy
line image after filtering with n = 100. Comparing the
histograms, one can clearly see how components corre-
sponding to noise have effectively diffused away. Note
that some of the moderate gradient components in the
original also diffuse away, which leads to the gradient
sharpening. In the presented case the optimal diffusivity
function corresponds to A = 11. For A\ > 11 the original
edges are not retained, but for A < 11 some noise gradi-
ents may be amplified. In extreme situations such as
this example, where the gradient spectrum of the noise
overlaps significantly with that of the original function,
the correct choice of \ is crucial. As is discussed in Ref.
13 in a similar context, the optimal A should be chosen to
be as small as possible so that the largest possible range
of physical gradients can be preserved. In the context of
the PLIF images that we present below, we found \
= 1.20,, where o, is the standard deviation of the noise
gradient distribution, to be a good choice for almost all ex-
perimental situations encountered.

C. Nonlinear Diffusion Filtering of OH Planar Laser-
Induced Fluorescence Images

An example of an OH PLIF image before and after non-
linear filtering is shown in Fig. 2, where Fig. 2B is the un-
processed OH PLIF image and Fig. 2C shows the image
after nonlinear diffusion filtering, by use of Weickert’s dif-
fusivity function [Eq. (5)], with m = 8. The image corre-
sponds to 300 computational iterations with A = 4.5 and
o = 1. Clearly the signal-to-noise and contrast-to-noise
ratios are strongly enhanced, thus simplifying a succes-
sive segmentation of OH boundaries (see subsection 3.D).
In Fig. 9 the effect of the contrast parameter \ on the fil-
tered images is illustrated. Figure 9A shows the inten-
sity along one pixel row, corresponding to the line indi-
cated in white in Fig. 2B; in Figs. 9B—-9D the filtered data
is shown for \ equal to 3, 5, and 7. The gradient sharp-
ening is evident from these cuts. Note the effect of the
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contrast parameter on the preservation of image struc-
ture: As \ is increased, small-scale structure is lost, and
in Fig. 9D, for example, the middle peak of OH is lost. It
is clear, therefore, that a proper choice of the contrast pa-
rameter is crucial. However, since the noise-gradient
spectrum was similar in all experimental situations we
encountered, a single A value (obtained by the method
outlined in Subsection 3.B) was usually sufficient to pro-
duce satisfactory results for nearly all images processed
within an experimental run. The choice of the smoothing
kernel, characterized by o, and the number of time steps
n is far less critical. Good results were achieved for
n = 150 and o = 1 in all cases.

Figure 10 shows three-dimensional plots of Figs. 2B
and 2C. A comparison of the two images illustrates sev-
eral attractive properties of the filtering process. Noise
levels are drastically reduced without compromising over-
all intensities. Small structure is preserved, while OH
boundaries are strongly enhanced.

D. Flame-Front Identification

One can easily identify the OH boundary (the flame front)
from the diffusion filtered images by computing the gra-
dient of the filtered image and thresholding and binariz-
ing the resulting gradient image. The boundary of the

intensity

pixel nurmber

intensity

Fig. 10. Three-dimensional plots of, A, the original PLIF image
and, B, the nonlinear-diffusion-filtered image.
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Fig. 11. Original PLIF raw image with the identified flame
fronts superimposed as white outlines.

resulting image is then taken as the OH boundary. In
Fig. 11 this procedure has been applied to Fig. 2C, and
the detected boundary has been superimposed on the raw
image (Fig. 2B). From the identified flame front, the
circumference-to-area ratio, 7, of the burned regions in
the flame can be calculated, which is a parameter that is
highly suitable for comparisons with theoretical flame
calculations.'’

An important issue in the present application is how
the choice of parameters for the nonlinear diffusion filter
influences 7. To investigate this quantitatively, we
evaluated the sensitivity of 7 to the choice of parameters
in Eq. (6) and to the signal-to-noise level present in the
raw image.

For this purpose the OH PLIF image in Fig. 2B was
first nonlinear diffusion filtered with a range of values
used for N\, o, n, and m. The flame front was then ex-
tracted from the filtered images by the method outlined
above, and 7 was evaluated. The variation of #» in rela-
tion to these parameters is plotted in Figs. 12A-12D.

In Fig. 12A, 7 (normalized to 1 for the parameter val-
ues used in subsection 3.C) is shown as a function of the
contrast parameter \; 7 is seen to increase with increas-
ing N. This result can be explained, because small fea-
tures with low gradients are not preserved by the filter at
large \ (see Fig. 9D), and as a consequence the evaluated
area decreases, thus making » larger. As can be seen, 7
increases by ~13% for when \ increases by nearly a factor
of 2. As was discussed above, the critical dependence on
the choice of \ (caused by the high selectivity of Weick-
ert’s diffusion kernel) is a weakness of the method, which
may limit its use in some applications. For \ larger than
5.5, in the present example, structures start to merge or
disappear, and some edges start to diffuse away after
multiple iterations.

In Fig. 12B, 7 is plotted as a function of the smoothing
kernel width, o. Over the range 0.4 < ¢ < 1.2, 7 stays
nearly constant, and thus the choice of ¢ is not critical in
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the present application. For values of o smaller than 0.4,
the flame area is overestimated because noisy structures
are preserved. Values of ¢ larger than 1.2 result in the
same problem as the classical diffusion discussed in Sec-
tion 2: KEdges become blurred to a degree that physical
information is lost.

In Fig. 12C the evolution of 7 with n, the number of
computational iterations, is shown. It can be seen that 7
stabilizes after slightly more than 100 iterations, al-
though there is actually a continuous small decrease
caused by numerical rounding errors.

In Fig. 12D, 7 is plotted for the different diffusivity
functions associated with m values ranging from 5 to 15.
It is seen that 7 decreases only slightly with m over this
range. It must be noted, however, that m is not inter-
pretable as a diffusion filtering parameter like \, o, and n
in Figs. 12A-12C, but rather as a number that defines the
shape for the diffusivity function. In this context the op-
timal choice of A to suppress noise and sharpen gradients
might not be the same for the diffusivity functions asso-
ciated with different m values (see also the discussion in
subsection 3.B).
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Fig. 12. Dependence of the circumference to area ratio, 7, as a
function of different filter parameters. A, Dependence on \; B,
on o; C, on n; D on m.
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Fig. 13. Circumference to area ratio, 7, as a function of the
noise level in an artificially generated test image.



2156 J. Opt. Soc. Am. A/Vol. 17, No. 12/December 2000

To investigate the influence of the signal-to-noise ratio
on 7, we generated a series of test images with increasing
degrees of noise superimposed. For this purpose a test
image was generated from the OH-contour depicted in
Fig. 11 with infinite contrast and gradients like those that
naturally occur in such flames. Gaussian noise, with a
standard deviation ranging from 0 to 60% of the signal
level, was added to this test image. The ratio » was then
calculated in the same manner as described above. The
results are shown in Fig. 13. For noise levels up to 10%,
corresponding to a signal-to-noise ratio of 10, % is con-
stant to within less than a percent, highlighting the
strength of the current method. For larger noise levels 7
is increasing because some artificial structure is being
generated by the noise. Note, however, that even for
noise levels as high as 35% (corresponding to a signal-to-
noise ratio of only 3, a situation rarely present in an ac-
tual experiment) the increase in 7 is only ~4%.

4. CONCLUSION

The present paper describes the adaptation and applica-
tion of anisotropic nonlinear diffusion filtering to planar,
laser-based, spectroscopic imaging methods. The filter is
well suited to suppress noise and to enhance structural
information in such data. We use nonlinear diffusion fil-
tering to extract information on object contours, in par-
ticular, for the evaluation of reaction boundaries in tur-
bulent flows. Advantages of the methods are its
efficiency, even in the presence of severe noise levels, and
its contour-enhancing properties, which greatly simplify
subsequent object identification and image segmentation
steps. Issues regarding the application of the method for
given environments are discussed, as well as the influ-
ence of several critical parameters on the model’s preci-
sion.

Although the technique has been applied in the par-
ticular context of laser-induced fluorescence imaging, it
should be equally suited for other planar laser diagnostic
techniques, for example, planar imaging by Mie, Ray-
leigh, or Raman spectroscopy. The technique is cur-
rently in use for data extraction from measurements per-
formed in turbulent flames.!%%°
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