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Evaluation schemes, e.g., least-squares fitting, are not generally applicable to any types of experiments.
If the evaluation schemes were not derived from a measurement model that properly described the
experiment to be evaluated, poorer precision or accuracy than attainable from the measured data could
result. We outline ways in which statistical data evaluation schemes should be derived for all types of
experiment, and we demonstrate them for laser-spectroscopic experiments, in which pulse-to-pulse
fluctuations of the laser power cause correlated variations of laser intensity and generated signal
intensity. The method of maximum likelihood is demonstrated in the derivation of an appropriate fitting
scheme for this type of experiment. Statistical data evaluation contains the following steps. First, one
has to provide a measurement model that considers statistical variation of all enclosed variables.
Second, an evaluation scheme applicable to this particular model has to be derived or provided. Third,
the scheme has to be characterized in terms of accuracy and precision. A criterion for accepting an
evaluation scheme is that it have accuracy and precision as close as possible to the theoretical limit. The
fitting scheme derived for experiments with pulsed lasers is compared to well-established schemes in
terms of fitting power and rational functions. The precision is found to be as much as three times better
than for simple least-squares fitting. Our scheme also suppresses the bias on the estimated model
parameters that other methods may exhibit if they are applied in an uncritical fashion. We focus on
experiments in nonlinear spectroscopy, but the fitting scheme derived is applicable in many scientific
disciplines. © 2003 Optical Society of America
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1. Introduction

In an experiment in which one measures the func-
tional dependence of output variables on certain in-
put variables, this dependence is governed by
physical quantities, some of which may be unknown
�measurands� and whose estimation from the exper-
imental data is desired.

We treat examples from laser spectroscopy for
which a signal �the output� is generated by interac-
tions of matter with radiation from pulsed laser
sources �the input�. Here, the measured values of
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input and output vary not only because of detector
noise but also because of pulse-to-pulse fluctuations
of the laser intensity. We derive an appropriate
evaluation scheme for this class of experiment for
situations in which the output depends linearly on
the input as well as for nonlinear dependence.

The general approach to deriving an appropriate
evaluation scheme consists of three steps: �a� es-
tablish a measurement model, �b� derive or choose
estimators for the measurands, and �c� characterize
the estimators. The measurement model is a for-
mal, mathematical description of the experiment,
usually in statistical terms, because of random vari-
ations in the measurement data. In step �b� one
usually seeks to find optimal estimators with re-
spect to certain criteria such as unbiasedness or
maximum efficiency �least standard uncertainty�.
�Terms for the properties of estimators are ex-
plained elsewhere.1–3� For this purpose step �c�, a
characterization of the estimators in terms of ex-
pectations, variances, etc. is required. A charac-
terization is also necessary for specifying the
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uncertainty of the estimates when one is presenting
the results.

The finding of optimal estimators, as well as their
characterization, depends in a crucial manner on the
measurement model. Therefore it is important to
establish a model that describes the actual experi-
ment as accurately as possible. If an estimator is
applied to an experiment that is not embraced by the
measurement model for which the estimator origi-
nally was derived, the achieved precision or
accuracy—or even both—may not be optimal. This
is true, for example, for the simple least-squares fit-
ting commonly applied to the class of experiment
treated in this paper, as this scheme does not apply to
data for which the output is statistically correlated to
the input.

We derive an appropriate fitting scheme by model-
ing, in step �a�, both the measurement errors �detec-
tor noise� and the laser intensity fluctuations as
stochastic variables, whereas, in commonly applied
least-squares schemes, only the measurement errors
are modeled as such. The former description is more
appropriate, as all the knowledge about the statisti-
cal nature of the random variability of the data is
implemented in the evaluation. Therefore the re-
sultant estimators can be expected to be of optimal
precision.

To find optimal estimators in step �b� we apply the
method of maximum likelihood �ML� to our model.
Finally, in step �c� we characterize the obtained esti-
mators by their expectations and variances, which we
obtain from Monte Carlo simulations. In this way
we can also compare our method and other fitting
schemes.

The method of ML was proposed by Fisher.4 It
provides estimators that are not necessarily unbi-
ased, but they are most efficient if most-efficient es-
timators exist.3 Otherwise, they are at least
asymptotically most efficient when the number of
replicates is increased. Moreover, they are consis-
tent. In many cases the method results in data ad-
justment or curve-fitting procedures, the most
prominent of which are variants of the least-squares
�LSQ� method.

The method of LSQ dates back to Legendre, Gauss,
and Laplace5 and has since been the subject of many
publications. As long as the model function is linear
in the unknowns, an analytical solution for the fitting
exists, whereas the general, nonlinear case requires
an iterative numerical procedure. A fairly general
and elegant description of the nonlinear case has
been known for several decades6–10 but does not pro-
vide ML estimators for the type of experiment treated
in this paper. For this reason, we present a more
appropriate fitting scheme, to which we refer as co-
variant weighted LSQ �covariant WLSQ� fitting.
This method provides estimates of unknown param-
eters with an excellent accuracy and with virtually
the smallest standard uncertainty obtainable from
the experimental data. Moreover, it can be used for
the evaluation of a variety of experiments in physics
and other sciences. The computer routines devel-

oped as part of this study are available free of charge
from the authors �see Section 5 below�.

The outline of this paper is as follows: In Subsec-
tion 2.A we begin with some general remarks about
the importance of an appropriate measurement
model, and in Subsection 2.B we describe our mea-
surement model for laser spectroscopic experiments
with pulsed lasers. Then we apply the method of
ML to derive an expression that has to be minimized
during the fitting �Subsection 2.C�.

We proceed by demonstrating the method for dif-
ferent types of laser-spectroscopic experiment. We
use Monte Carlo simulations to characterize and to
compare the method with other fitting procedures,
namely, simple LSQ and WLSQ fitting and a tech-
nique to which we refer as log–log fitting �Sections 3
and 4�. Finally, in Section 5 we summarize and
draw conclusions from our research.

A list of symbols used in this paper can be found in
Appendix A. In Appendix B we provide short intro-
ductions to the fitting schemes discussed in this pa-
per, and in Appendix C we describe the method of
Monte Carlo simulations. Appendix D explains the
data plotting technique that we use for presentation
of our results in Section 4.

2. Theory

A. Statistical Inference

Here we give some general remarks about statistical
inference and the importance of the measurement
model.

The aim of a measurement is generally to infer the
values of unknown quantities �measurands�. The
applied experimental apparatus, however, seldom
provides the measurands directly but instead pro-
duces data related to them. From the data, the ex-
perimenter calculates estimates of the measurands,
using some evaluation scheme. Because of the in-
evitable random variability in the data, the estimated
values would show some random variation if the ex-
periment were carried out several times or by differ-
ent experimenters. This variability in the estimates
implies an uncertainty about the true values of the
measurands. Moreover, uncertainty can also arise
from uncertainties of quantities used in the evalua-
tion, e.g., experimental parameters or physical con-
stants that are known only to a certain degree.

Both uncertain and randomly varying quantities
are described mathematically by stochastic variables
and so are the results of the evaluation, for which the
associated stochastic variables are called estimators.
The values that the estimators assume for a partic-
ular data set are the estimates. The evaluation
scheme defines the estimators by mathematical func-
tions and procedures through which the uncertain-
ties and variations of the involved quantities
propagate to the estimators, which determines their
statistical properties, such as their distribution func-
tions, variances, and expectations. From these the
uncertainty of the estimates can be derived. Thus a
characterization of the estimators in such terms is
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necessary for description of the uncertainty of a mea-
surement.

In addition, the experimenter usually seeks opti-
mal estimators with respect to certain criteria such
as unbiasedness, maximum efficiency, consistency,
and robustness.1–3 Also, for this purpose a charac-
terization of the estimators is required.

For a characterization, the experiment has to be
described in a formal way, namely, by a measure-
ment model. This model comprises a physical model
that describes the relations between physical quan-
tities, and a statistical model that describes all un-
certain or randomly varying quantities. The
quantities that appear in the model are the unknown
true values of the measurands, known quantities,
uncertain quantities, and randomly varying quanti-
ties. The two former are modeled by numerical pa-
rameters, whereas the two latter are modeled by
stochastic variables. Finally, the model contains
the data as stochastic variables whose properties de-
pend on the quantities mentioned above.

Of course, the measurement model has to describe
the experimental situation as realistically as possi-
ble. Only if all experimenters agree on which model
fulfills this requirement can the estimators be char-
acterized properly, various estimators be compared,
and the optimal one be found. Otherwise, estima-
tors proposed by different experimenters are not mu-
tually comparable, because an estimator that is
optimal for one model might not be optimal for an-
other one. So different experimenters will come to
different conclusions about the quality of the estima-
tors.

Once an appropriate measurement model is agreed
on, estimators for the same measurand can be com-
pared. Moreover, the adequacy of various models
can be judged when existing evaluation schemes are
applied based on models that are different from the
one that describes the actual experiment. The cri-
teria for such a judgment are, of course, the afore-
mentioned properties of the resulting estimators in
the light of the agreed model. For the types of ex-
periment treated in this paper, we discuss such an
alternative model.

The above considerations imply the following steps
for each evaluation, which we follow here: �a� define
the appropriate measurement model, �b� choose esti-
mators for the measurands, and �c� characterize the
estimators in light of the measurement model.

B. Measurement Model

In this and in Subsection 2.C we derive the covariant
WLSQ fitting scheme with bias correction. Note
that nothing more is done than the formulation of an
appropriate measurement model for the experiment
and consequent application of the method of ML with
some natural approximations such as the use of the
central-limit theorem or a Taylor expansion.

The measurement model used in this research is
illustrated in Fig. 1. The output energy from a
pulsed laser source is measured on Detector 1 before
being passed into an interaction region. The signal

generated in the interaction region is registered by
Detector 2. The measurements are affected by ad-
ditive noise, Eij

�1� and Eij
�2�, for Detectors 1 and 2, re-

spectively �The subscripts i and j are explained
below.� Moreover, laser intensity Lij varies from
pulse to pulse even if the experimental setting is not
changed. The statistical distribution of these vari-
ations as well as that of the noise are assumed to be
stationary.

During the experiment we choose a number n of
experimental settings with which to study the rela-
tionship among several physical quantities. For ex-
ample, for the power dependence measurements
described in Section 3 below, each setting corre-
sponds to a mean intensity of the laser, which one can
change, for instance, by placing filters into the laser
beam. But even other parameters such as temper-
ature and pressure in a gas cell, or the whole exper-
imental setup, can be changed from one setting to
another.

For each setting, several measurements �repli-
cates� are recorded, from which one can estimate sta-
tistical properties of the observed quantities, such as
means, variances, and covariances. For a specific
setting i � �1, . . . , n� a cluster containing mi data
points numbered j � �1, . . . , mi� is obtained. �For a
list of symbols please refer to Appendix A.� Lij is the
true laser intensity, which corresponds to the jth data
point within the ith cluster. Here the laser intensity
is assumed to fluctuate normally about an expecta-
tion li with a variance �Li

2 :

� j: Lij � ��li, �Li
2 �. (1)

The observed laser intensity Xij is assumed to con-
tain additive, normally distributed detector noise Eij

�1�

with zero mean and variance �1i
2 :

Xij � Lij � Eij
�1�, (2)

� j: Eij
�1� � ��0, �1i

2 �. (3)

The dependence of the generated signal on the la-
ser intensity is described by function fi, and detected
signal Yij contains additive, normally distributed
noise Eij

�2� with variance �2i
2 :

Yij � fi�Lij� � Eij
�2�, (4)

� j: Eij
�2� � ��0, �2i

2 �. (5)

Fig. 1. Block diagram of the setup for a laser-spectroscopic ex-
periment. The symbols shown in this figure are explained in
Subsection 2.B.
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Function fi contains known and unknown parame-
ters, the latter of which are the measurands to be
estimated. It can be linear or nonlinear with respect
to Lij; the nonlinear case is the main interest of this
research. Its dependence on setting index i allows
not only for changes in the experimental parameters
but also for totally different model functions for each
setting. Thus the experimental setup can be differ-
ent for each setting, and even the results from totally
different experiments can be combined in this way.

Note the importance of distinguishing the various
sources of random variation, namely, the fluctuations
of laser intensity Lij and detector noise Eij

�1� and Eij
�2�.

The first is common to the observed laser and signal
intensities, Xij and Yij, respectively, and their varia-
tions are therefore correlated. Uncertainties, how-
ever, are introduced only by detector noise. To
understand this, assume, for a moment, data without
noise, such that Xij � Lij and Yij � fi�Lij�, i.e., that all
data points lie on the correct curve. This would lead
to a perfect curve fit without any uncertainties in the
parameters, although laser fluctuations were
present.

The model presented here is not restricted to laser
spectroscopic experiments but applies to a variety of
experiments in which the observed input and output
signals of a system are subject to statistical fluctua-
tions of the true input signal.

Before proceeding with derivation of the covariant
WLSQ fitting scheme we make some remarks about a
conceivable alternative measurement model. Such
a model is interesting to justify the application of the
nonlinear LSQ scheme discussed elsewhere,6–10 but
we regard our measurement model as more realistic.
In Section 3 below, we also discuss the numerical
problems allied to applying LSQ and ML fitting to the
alternative model. Furthermore, the alternative ap-
proach is not expected to provide estimates of higher
fidelity than our fitting scheme does.

In this alternative fitting scheme the underlying
measurement model assumes data given by some
true values of physical quantities plus some random
measurement error. The true values fulfill some al-
gebraic relation to the unknowns. This is not the
situation described by our model, in which the true
laser intensities Lij are stochastic variables charac-
terized by their expectations li and their variances
�Li

2 , which are the unknowns. The relation between
these unknowns and Lij is not an algebraic one but a
statistical one, because li and �Li determine not the
values of Lij but only their distribution function.

To apply the general LSQ scheme requires that the
true laser intensities be modeled by quantities that
are algebraically related to a set of unknowns. Be-
cause the laser intensities are random and cannot be
obtained from the model parameters in a determin-
istic way, they have to be represented by unknowns
themselves. Thus, for the application of the com-
mon LSQ scheme, one has to replace stochastic vari-
ables Lij by unknown parameters, say, lij, such that li
and �Li lose their meaning and are removed from the
model.

The resulting measurement model treats all laser
intensities equally and makes no assumptions about
their possible values. In reality, their possible val-
ues are governed by some probability law and are
consequently restricted, in the sense of a most-
probable range of values. Moreover, in the experi-
ment this probable range is the same for all points in
a cluster but can be different for different clusters.
By contrast, this knowledge is not incorporated in the
alternative model.

The question remains: Will an evaluation scheme
that is optimal for this measurement model also be
optimal for the present experimental situation? In-
asmuch as our model is an appropriate description of
the experiment, there is no reason why such an eval-
uation scheme would provide more-accurate esti-
mates than an optimal scheme based on our model.

A drawback of this model stems from the large
number of unknowns, i.e., lij, �1i, and �2i, which have
to be optimized during fitting. Compared with our
method presented in Section 3 below, this approach is
numerically highly demanding, and the fitting proce-
dure hence is comparably slow.

C. Application of the Method of Maximum Likelihood

1. Outline
The most important step of the method of ML is the
formulation of the correct likelihood function � of the
experiment. This function contains the unknowns
as parameters, for which the method of ML chooses
those values that maximize the likelihood function.
Often it is instead easier to maximize the log-
likelihood function ln � or to minimize a function �2,
which is closely related to it. For the implementa-
tion of its minimization on a computer we use numer-
ical standard algorithms in the MATLAB
Optimization Toolbox, which is not explained further
here.11

In the first part of this section linear relationships
fi are treated, as this can be done exactly, whereas the
nonlinear case is cumbersome or requires some ap-
proximations. The resulting fitting scheme is called
the covariant WLSQ method. Compared to simple
LSQ and WLSQ, an improvement of the precision is
already obtained for the linear case, which means
that these fitting schemes are inappropriate not only
for nonlinear relationships but also for linear ones if
the input �laser intensity� and the output �signal� are
statistically correlated to each other. The linear
case is also interesting, because nonlinear relation-
ships can often be approximated linearly within the
relatively short range where the sample points of
each cluster lie.

The likelihood function is basically the joint
probability-density function �PDF� of all observed
quantities in the experimental data set. If the ran-
dom variations of different data points are indepen-
dent, � is simply the product of the PDFs of the data
points. However, the coordinates Xij and Yij of one
point are not statistically independent according to
the measurement model in Subsection 2.B, and their
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PDF has to be described by the general, two-
dimensional normal distribution including the co-
variance. This is the main difference between
covariant WLSQ and WLSQ fitting.

The nonlinear case becomes important when the
laser fluctuations within each cluster are large.
Then the distribution of the output Yij is not normal
anymore because of the curvature of fi and is cum-
bersome to describe exactly. Therefore we use an-
other approach in which we average the observed
input and output values for each cluster and consider
the data points thus obtained, i.e., �Xi, Yi�. Accord-
ing to the central-limit theorem of statistics, the
means can approximately be described by a normal
distribution, for which, however, the correct param-
eters must be used. Above all, the expectation of the
averaged output, ��Yi�, is not simply fi���Xi�	, so the
data points from averaging lie systematically beside
the real curve that describes the relationship �see Fig.
2�.

Because an exact expression for ��Yi� is not easy to
find, we derive it from a second-order Taylor expan-
sion of fi. This turns out to be satisfactory for the
examples discussed in Section 4 below, as bias on the
estimates of the unknowns is minimized efficiently in
this way. We refer to this treatment of ��Yi� as bias
correction.

2. Linear Relationship
As mentioned above, likelihood function � is the
product of the PDFs of the single, statistically inde-
pendent data points. This product has to be calcu-
lated over all possible pairs of the cluster number �i�
and the number of the data point within a cluster � j�:

� � 

i�1

n



j�1

mi

pij� xij, yij�, (6)

where pij is the PDF for the data point �Xij, Yij�.
With this function one can determine the probability
of the data point’s lying in a specific region of �2 �or
the xij–yij-plane� by integrating pij over this region.

As follows from the model, i.e., formulas �1�–�5�, Xij
is normally distributed and so is Yij, if the function fi
is linear. If Xij and Yij were independent, pij could be
written as the product of two normal distributions:

pij
�indep.�� xij, yij� �

1
�2���Xi�	

1�2 exp��
� xij � ��Xi�	

2

2��Xi�
�

�
1

�2���Yi�	
1�2 exp��

� yij � ��Yi�	
2

2��Yi�
� .

(7)

This would lead to the WLSQ fitting scheme �see
Appendix B�. Note that the expectations and vari-
ances of Xij and Yij do not depend on j, as their dis-
tributions are the same for all j �see formulas �1�, �3�,
and �5�	. To underline this fact we define �Xi, Yi� as
random variables with the same distributions as �Xij,
Yij� and use them to express the expectations, vari-
ances, etc.

In this study Xij and Yij are correlated such that the
general, two-dimensional normal distribution6,12,13

must be used instead of Eq. �7�:

pij� xij, yij� �
1

2��det �i�
1/ 2 exp��

1
2

�ij
T�i

�1�ij� , (8)

�ij :� �xij � ��Xi�
yij � ��Yi�

� . (9)

�i
�1 is the inverse of the covariance matrix of Xij and

Yij, given by

�i:� � ��Xi� ��Xi, Yi�
��Xi, Yi� ��Yi�

� . (10)

The readers may convince themselves that Eq. �8�
becomes Eq. �7� if Xij and Yij are uncorrelated, i.e., for
��Xi, Yi� � 0.

As fi�l � is assumed to be linear in l, expressions for
��Xi� and ��Yi� can readily be derived from Eqs. �2�
and �4�:

��Xi� � li, ��Yi� � fi�li�. (11)

The elements of �i can be expressed by the model
quantities �Li, �1i, �2i, and li and the unknown pa-
rameters of the model function fi, say, a1, a2, . . . :

�i � �i��Li, �1i, �2i, li, a1, a2,. . .�. (12)

We do not present the mathematical expressions
here, as we shall use another way of estimating �i
�see below�.

We now obtain the likelihood function by inserting
Eqs. �9� and �11� as well as the expressions that cor-
respond to Eq. �12� into Eq. �8�, and then Eq. �8� into
Eq. �6�. Moreover, xij and yij in Eq. �9� have to be
replaced by the experimental data. Then � is a
function of the model parameters �Li, �1i, �2i, and li
and the unknown parameters of fi:

� � ���Li, �1i, �2i, li, a1, a2,. . .�. (13)

Fig. 2. Schematics of bias from nonlinearity. �a� When no laser
fluctuations occur, the variations of observed laser and signal in-
tensities are caused by detector noise. Here both variations are
symmetrical, and a point �x�, y�� obtained from the mean intensities
is expected to lie close to the curve that describes the nonlinear
dependence. �b� Laser fluctuations contribute essentially to the
variation. Although the laser intensities are distributed symmet-
rically, the signal intensities are not, because of the nonlinear
dependence. Hence bias is introduced, as can be seen from point
�x�, y�� lying systematically beside �here, above� the curve.
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All these parameters have to be varied to maximize
the likelihood function, �. To reduce this large
number of parameters we eliminate the parameters
�Li, �1i, and �2i by replacing each of the covariance
matrices �i by its sample estimate ûi. This matrix
contains the sample estimates of the variances and
the covariance14,15 of the observed values xij and yij in
the ith cluster. In this way, the so-called pseudo-
likelihood is obtained, being a function of li and of a1,
a2, . . . only:

� � ��li, a1, a2,. . .�. (14)

To keep the computations simple we minimize only
the sum of the negative exponents in Eq. �8�:

�2 :� 
i�1

n


j�1

mi

�ij
Tûi

�1�ij, (15)

which corresponds to the maximization of � as a
result of the relationship ln � � constant � �2�2.
The constant arises from the coefficient in Eq. �8� and
is not relevant for the optimization here. Note that
it is its constancy that enables standard LSQ algo-
rithms to be used for the implementation of our meth-
od; see Section 5 below.

3. Nonlinear Relationship
If function fi�l � is nonlinear in l and the laser fluctu-
ations are relatively large, the distributions of fi�Lij�
and Yij will be distorted compared with normal dis-
tributions. An exact description of the distributions
is cumbersome, which is why we use another ap-
proach. We consider data points �Xi, Yi� obtained
from averaging the observed input and output in each
cluster:

Xi :�
1
mi


j�1

mi

Xij, Yi :�
1
mi


j�1

mi

Yij. (16)

Each Xi is normally distributed, and so are Yi if the
number mi of points per cluster is sufficiently large,
because of the central-limit theorem.3,13

Because the number of data points used in the
fitting is now reduced to n, the likelihood function is

� � 

i�1

n

pi� x� i, y� i�. (17)

The PDF pi of data point �Xi, Yi� can be approximated
by a two-dimensional normal distribution similar to
Eq. �8�:

pi� x� i, y� i� �
1

2��det��i�mi�	
1�2 exp��

1
2

�i
T��i

mi
��1

�i� ,

(18)

�i: � �x� i � ��Xi�

y� i � ��Yi�
� . (19)

Expression �i�mi is the covariance matrix of the
pair �Xi, Yi�. The fitting consists of the minimiza-
tion of

�2 � 
i�1

n

�i
T� ûi

mi
��1

�i. (20)

As in the linear case, we estimate �i from sample
covariance matrix ûi.

The expectation of Xi is

��Xi� � ��Xi� � li. (21)

For ��Yi�, however, an exact expression is not readily
found, as such an expression might comprise inte-
grals that cannot be solved exactly. A good approx-
imation is obtained from a second-order Taylor
expansion of fi in the vicinity of li �cf. Eq. �4�	:

Yij � fi�li� � fi��li��Lij � li� � 1⁄2 fi��li��Lij � li�
2

� Eij
�2�. (22)

From this the expectation of Yi results in

��Yi� � ��Yi� � fi�li� � 1⁄2 fi��li��Li
2

� fi�li� � 1⁄2
fi��li�

fi��li�
��Xi, Yi�. (23)

The expectation of the linear term fi��li��Lij � li� is
zero, because ��Lij� � li. In expression �23�, �Li

2 was
replaced according to

��Xi, Yi� � fi��li��Li
2 , (24)

and the covariance is estimated by the corresponding
element in sample covariance matrix ûi.

Expression �24� results from the second-order Tay-
lor expansion and the assumptions of the measure-
ment model. In particular, the detector noise on
Detector 1 should not be correlated to that of Detector
2, and the noise of both detectors should not be cor-
related to the laser fluctuations. Moreover, the as-
sumed symmetry of the laser fluctuations �normal
distribution� makes the third moments of Lij vanish
in expression �24�. For unsymmetrical fluctuations
a modification of this expression might therefore be
necessary.

The additional term in expression �23� is caused by
the curvature � fi�� of function fi and is proportional to
the covariance of laser and signal intensity. It is the
approximate amount by which the averaged data
points are expected to lie above or under the correct
curve fi; see Fig. 2. Neglect of this term would result
in bias on the estimates for the unknowns, which we
demonstrate in Section 4 below. In this paper the
term is referred to as bias correction.

For the linear case, it can be shown that minimiz-
ing Eq. �20� is equivalent to minimizing Eq. �15�.
Therefore and because of its smaller computational
expense, we use Eq. �20� for both linear and nonlinear
relationships, and we refer to the method as covari-
ant WLSQ fitting with bias correction.

Finally we give a criterion that has to be fulfilled if
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WLSQ fitting instead of covariant WLSQ fitting is
used. It is obtained from the expectation value of �2

in Eq. �20�, and it requires that all contributions to
this expectation that contain the factors ��Xi, Yi� be
much less than the remaining ones:


i�1

n ��Xi, Yi�
2

mi det �i
��

i�1

n ��Xi���Yi�

mi det �i
. (25)

3. Comparison of the Fitting Methods

We compared the performance of our fitting schemes
with those of simple LSQ, WLSQ, and log–log fitting
�for descriptions of these methods see Appendix B�.

The examples are related to so-called power depen-
dency measurements. Here one records the signal
as a function of laser intensity with other experimen-
tal parameters held constant. The model functions f
that are used in this context are described in Section
4.

The confidence interval of an estimated parameter
of f can be obtained analytically.14 However, for
nonlinear model functions this entails systems of
nonlinear equations that are difficult to solve. We
chose the method of Monte Carlo simulation instead,
which is mathematically simple but relies on the high
processing speeds of modern computers. With this
tool one can study in detail the influence of various
quantities, such as detector noise, on the estimated
parameters. Readers unfamiliar with this method
are referred to Appendix C. The software used for
the minimization in the various LSQ fitting ap-
proaches is described elsewhere.11

Fitting methods based on the alternative model
mentioned in Subsection 2.B were not considered in
this study for several reasons. The general nonlin-
ear LSQ scheme6–10 cannot be applied to this model
because the scheme requires knowledge about �1i
and �2i that is not available here. In contrast, our
fitting method uses the covariance matrices �i, which
can be estimated by their sample counterparts ûi.
Applying the method of ML to this model circumvents
the issue of unknown �1i and �2i, and it provides a
scheme that is exact apart from the numerical preci-
sion of the iteration algorithm and that does not need
to handle covariance matrices. However, it requires
much longer computational times than the scheme
presented here. For instance, when an implemen-
tation that used optimization algorithms of the MAT-
LAB Optimization Toolbox was applied to the type of
data used in Section 4 below and noise was assumed
on both detectors with constant and equal variance,
the fitting took more than 100 times longer than with
our scheme. The reason for this is the large number
of unknown laser intensities lij, which have to be
estimated by the fitting procedure just like the mea-
surands. In the example we had 11 clusters contain-
ing 100 data points each, i.e., more than a thousand
parameters.

To circumvent the large number of unknowns, one
could replace the unknown laser intensities lij by the
measured laser intensities xij and apply the common

LSQ scheme then. This approach reduces the num-
ber of fitting parameters substantially, but it results
in biased estimates,16,17 so this attempt would not
overcome the numerical drawbacks.

Furthermore, in a ML scheme based on the alter-
native model, �1i and �2i appear as unknowns and
have to be varied during the iteration just like the
other unknowns lij, a1, a2, . . . , which would increase
the computational expense even more. Besides, �1i
and �2i appear in the pre-exponential factors of the
likelihood function of the alternative model, and
these factors would therefore vary during the itera-
tion. Hence the evaluation scheme would not be of
the LSQ type, and standard LSQ algorithms could
not be used for the implementation of the fitting as in
this research; cf. Section 5 below.

To avoid �1i and �2i as unknowns, they could be
obtained from sample covariance matrices by solu-
tion of Eq. �12�. However, the resulting expressions
depend on the parameters a1, a2, . . . and have to be
recalculated in each iteration step, again increasing
the required computational time and leading the
scheme’s not being of the LSQ type.

Because of the long computational times, Monte
Carlo simulations for such a scheme would have
taken too long, which is why a ML scheme based on
the alternative model was not included in the com-
parison here.

4. Results and Discussion

To investigate the accuracy and precision of the dif-
ferent estimators we generated synthetic measure-
ment sets with predefined model parameters �see
Appendix C�. Synthetic data sets—as opposed to
measured sets—permit the calculation of bias of the
various estimators, as the correct model parameters
are known. Walewski et al. obtained realistic values
for standard deviations �Li, �1i, and �2i �Subsection
4.B�, laser intensities li �in the same subsection�, and
the model parameters by mimicking real measure-
ment data.18 Each cluster contains mi � 100 mea-
surement points �replicates�. Thousand of such
synthetic data sets were generated; fitting schemes
discussed in Subsection 4.C and Appendix B were
applied to each set. Two classes of model function
have been studied in this research: power functions
and rational functions.

To keep the following discussion easy to grasp, we
show only the attained distributions of the estimated
parameters. Anyhow, for a thorough characteriza-
tion of estimators their mutual correlation, i.e., their
covariances, also has to be considered, especially
when the estimates are applied for prediction of mea-
surement data �see the ISO guide15,19�. These co-
variances can easily be estimated from sets of
estimated parameters obtained from the Monte Carlo
simulation. For a linear dependence on the varying
l the covariance matrix of the estimates can also be
derived analytically with a formula presented by
Celmiņš.8
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A. Power Function

Power functions can be found nearly everywhere in
the field of physics. Examples in laser spectroscopy
are unsaturated multiphoton processes such as mul-
tiphoton laser-induced fluorescence and higher-
harmonic generation.20 The model function is
written as follows:

f �l, a, b� � alb. (26)

The parameters to be estimated are a, b, and ex-
pected laser intensities li. For analyzing such data,
experimenters previously almost universally fitted a
straight line to the logarithms of the mean values of
all measurement clusters. We refer to this fitting
scheme as log–log fitting and compare it with the
other methods.

The model parameters chosen were a0 � 1.36 �
10�3 and b0 � 2. In Fig. 3 an example of such a
synthetic measurement set is shown. The distribu-
tions of the estimated parameters that we obtained
are shown in Figs. 4 and 5 as box-and-whiskers plots
�for an explanation of this plotting technique see Ap-
pendix D�. The estimated parameters are displayed
as the relative deviation from preset values a0 and b0,
respectively. Because ML estimators are asymptot-
ically normally distributed when the number of rep-
licates is increased, we choose, for the examples
discussed in this paper, to estimate the expectation of
the estimated parameters by taking the value of the
median, which indeed is an appropriate procedure for
symmetrically distributed variables. The vertical
length of the box and the whiskers together is a mea-
sure for the standard deviation of the estimated pa-
rameter. Notice that smaller standard deviation
implies higher precision.

An evident result for both model parameters a and
b is that the precision increases when one is going
from simple LSQ to WLSQ or one of the two covariant
WLSQ estimators, WLSQ or covariant WLSQ. Both
simple LSQ and these other estimators had been ob-
tained with the method of ML but based on different
statistical models. The underlying statistical model
for simple LSQ does not properly describe the evalu-
ated data, which resulted in poor precision, in this

Fig. 5. Estimates of parameter b for a power function �Eq. �26�	
for the various fitting schemes �see Appendix B�. The results are
shown as relative deviations from initial model parameter b0.

Fig. 3. Example of a synthetic data set generated with parame-
ters for the laser intensities and the uncertainties that were ob-
tained from a fit to measurement data by Walewski et al.18 There
are 11 clusters, with mi � 100 data points each. The clusters are
distinguished by different gray levels of the symbols. Thousand of
such sets were produced by Monte Carlo simulation and evaluated
with fitting schemes described in Subsection 2.C and Appendix B.

Fig. 4. Estimates of parameter a for a power function �Eq. �26�	
for the various fitting schemes �see Appendix B�. The results are
shown as the relative deviation from initial model parameter a0.
One thousand estimates of the parameter obtained from Monte
Carlo simulations were used for each fitting scheme for calculating
the distributions. On the ordinate the fitting schemes, log–log,
simple LSQ, WLSQ, covariant WLSQ without bias correction �cov
WLSQ� and covariant WLSQ with bias correction �bias corr WLSQ�
are marked. The interpretation of this plot and the meaning of
the crosses �outliers� are explained in Appendix D. Note that the
simple LSQ fitting scheme shows a more than three-times-worse
precision than the WLSQ scheme.
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case more than three times lower than that of the
WLSQ fitting scheme. Simple LSQ differs from
WLSQ fitting, among other things, in assuming that
the standard deviation of Yi is independent of sub-
script i �see Appendix B�. As one can see from Fig. 3
this is a faulty assumption for the evaluated data
sets.

The covariant WLSQ fitting scheme does not pro-
vide significantly improved precision for the esti-
mated parameters compared with WLSQ fitting,
because the correlation of signal and laser intensity is
too small compared with their variances. We eval-
uated inequality �25� in Section 3 and obtained 3.9 for
the left-hand side and 15 for the right-hand side,
which supports our observation.

The widely used log–log fitting scheme yields esti-
mates with higher precision than the simple LSQ
scheme, because its statistical model assumes stan-
dard deviations of Yi approximately proportional to
their expectations ��Yi�. This is a somewhat better
description of the data sets in this example �see Fig.
3�. The log–log fitting scheme hence shows a higher
precision than simple LSQ. Anyhow, its precision is
worse than that for WLSQ estimation because the
latter takes the adequate standard deviations for
both Y and X into consideration.

For all fitting schemes the precision of estimator B̂
is much larger than that of Â because power function
f is more sensitive to changes in b than to changes in
a.

The bias of the estimated measurands is small and
is readily observed only for simple LSQ. Anyhow,
all fitting schemes except bias-corrected covariant
WLSQ result in bias on both measurands. The dis-
cussion of the bias is taken up in more detail in Sub-
section 3.B.

B. Rational Function

Rational functions have been shown to describe the
dependence on laser intensity of various nonlinear
spectroscopic methods such as saturated laser-
induced fluorescence, degenerate four-wave mixing,
and polarization spectroscopy.18,21 For our study we
chose the following model function:

f �l, a, lsat� �
al3

�1 � l�lsat�
2 . (27)

This equation describes the laser intensity depen-
dence of polarization spectroscopy signals.18 Model
parameter lsat is the so-called polarization spectros-
copy saturation intensity.

The model parameters chosen for the Monte Carlo
simulations were a0 � 1.92 � 10�4 and lsat,0 � 31.8,
ensuring data sets with shapes similar to that of Fig.
3. The results are shown in Figs. 6 and 7. Here
again we notice the increasing precision of the esti-
mators when we go from simple LSQ to covariant
WLSQ estimation. In contrast to that of the power
function in Subsection 4.A, the fitting of Eq. �27� is
obviously more sensitive to skew signal distributions
because of the curvature of the function, which leads

to a larger relative bias for the fitting schemes with-
out bias correction. As discussed in Subsection 4.A,
exponent b in power function equation �26� is only
weakly dependent on the scatter of the measurement
values, and the same is true for its bias. However, in
Eq. �27� the model parameters enter the function not
as exponents but as linear scaling parameters for the
amplitude of the fraction and as a scaling parameter
for the laser intensity �in the denominator�. These
parameters possess higher sensitivity to skew signal
distributions. The simple LSQ, the WLSQ estima-
tor, and the covariant WLSQ estimator without bias
correction yield biased distributions of the estimated
model parameters, whereas the bias disappears
when the covariant WLSQ estimator with bias cor-
rection is used. This is a practical proof that the bias
correction is appropriate.

Anyhow, the observed bias in Figs. 6 and 7 is still

Fig. 7. Estimates of parameter lsat for a rational function �Eq.
�27�	 for various fitting schemes �see Appendix B�. The results are
shown as relative deviations from initial model parameter lsat,0.

Fig. 6. Estimates of parameter a for a rational function �Eq. �27�	
for the various fitting schemes �see Appendix B�. The results are
shown as relative deviations from initial model parameter a0.
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much smaller than the standard deviation of the es-
timators, which is due to the large detector noise on
the signal, i.e., large quotients �2i��Li ��4 in this
case�. To test the sensitivity of �2i��Li we repeated
the Monte Carlo simulations with ten-times smaller
�2i, i.e., �2i��Li � 0.4, which corresponds to measure-
ments made with detectors of low noise levels. For a
discussion of detectors and the noise that they intro-
duce, see Dereniak and Growe.22

The results of our simulations are shown in Fig. 8
�lsat only�. The bias of the simple LSQ, the WLSQ,
and the covariant WLSQ estimator without bias cor-
rection are approximately the same as in Fig. 7, but
the precision is now so high that the bias becomes
comparable to the standard deviation of the WLSQ
and the covariant WLSQ estimator without bias cor-
rection. Note that still no bias is revealed for the
covariant WLSQ fitting scheme with bias correction.

The reduction of �2i also entails demonstrably better
precision when the covariant WLSQ instead of the
WLSQ estimator, is used; i.e., the correlation of Yi and
Xi is now so pronounced that consideration of this cor-
relation in the fitting scheme produces a distinct effect.
For condition �25� �Section 3� we got 124 for the left-
hand side and 136 for the right, i.e., almost similar
values, a result that supports our observation.

Note that the bias of the uncorrected fitting
schemes becomes even comparable to or larger than
the standard deviation for the case of large detector
noise if the number of replicates is increased. As the
variance of the estimates converges toward zero for
mi 3 �, whereas the bias does not depend on mi �cf.
expression �23�	, there are always a certain number of
replicates for which the bias becomes significant.

The covariant WLSQ fitting scheme with bias cor-
rection requires large numbers of replicates accord-
ing to the central-limit theorem. Anyhow, this need

not be a limiting requirement, as we investigated by
rerunning the Monte Carlo simulations for this model
function with mi � 3 and mi � 10 replicates, respec-
tively. We observed the following: For three repli-
cates the covariant WLSQ fitting scheme with bias
correction did not succeed in suppressing the bias,
but for ten replicates the bias of the estimates was
already barely noticeable.

5. Summary and Conclusion

We have presented a statistical model for laser-
spectroscopic experiments that possesses the follow-
ing features: The dependence of the signal on the
laser intensity is described by a well-known model
function. The laser intensity is subject to stationary
fluctuations, and both variables are measured with
additive stationary noise. With aid of this model we
derived maximum-likelihood estimators of the model
parameters for the case when the signal depends lin-
early on the input. This method is referred to as
covariant weighted least-squares fitting �without bias
correction�. We have also presented an approximate
ML scheme for nonlinear model functions, and the
method is referred to as covariant weighted least-
squares fitting with bias correction.

We also described an alternative measurement
model that treats the true laser intensities as un-
knowns and not as stochastic variables. However,
the general, nonlinear LSQ scheme6–10 was not ap-
plied to this model, as the variances of the detector
noise are unknown. ML estimators based on this
model were not examined either, because their cal-
culation requires computational times more than 100
times longer than for the above schemes. Addition-
ally, because the alternative model does not give a
better description of the experiment, such a scheme is
not expected to provide more-precise estimators.

We elucidated the precision and accuracy of our
method by applying it to two classes of nonlinear model
function. Hereby, the precision of the model param-
eters could be compared when common methods �sim-
ple LSQ, WLSQ, and log–log� and the method derived
here were applied. The precision increased as much
as three times for the examples described in this paper
when we went from the simple LSQ by way of WLSQ
fitting and our methods. The biases of all estimators
except the covariant WLSQ fitting with bias correction
were found to depend on the class of the model func-
tion. It was also found that the bias may approach
the same order of magnitude as the uncertainty that is
due to random variations if one measures both signal
and laser intensity with low-noise detectors. Note
that for any magnitude of the statistical variations the
bias always becomes significant when the number of
replicates is increased over a certain value. When the
covariant WLSQ fitting scheme with bias correction
was applied to these measurements, the bias was vir-
tually reduced to zero. The applied method of bias
correction was shown to be successful for as few repli-
cates as ten for every cluster.

The covariant WLSQ fitting scheme presented here
is highly versatile because one can use standard LSQ

Fig. 8. Estimates of parameter lsat for a rational function �Eq.
�27�	 for several fitting schemes �see Appendix B�. The results are
shown as relative deviations from initial model parameter lsat,0.
The �2i values for this Monte Carlo simulation are ten times
smaller than for Fig. 7.
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fitting routines for maximization of the likelihood
function when an appropriate coordinate transforma-
tion is applied. Another advantageous feature is
that the minimized quantity �2 is approximately �2-
distributed and the goodness of an obtained fit can
hence be judged.

In conclusion, we showed that the method of ML is
a versatile and efficient method for measurement
evaluation if it is applied to a statistical model that is
adequate for the experiment. The method is simple
and offers the opportunity of treating a large variety
of similar experiments in the fields of physics, chem-
istry, and biology and other disciplines.

For the calculations in this research, a program
interface for MATLAB was developed. It allows
one to carry out covariant WLSQ estimations �with
bias correction� by using the LSQ routines of the
MATLAB Optimization Toolbox. In addition, it per-
forms Monte Carlo simulations for the estimation of
confidence intervals of the model parameters. This
program can be freely obtained from the World-Wide
Web �http:��www.forbrf.lth.se�WFIT�� or by an in-
quiry to T. Metz.

This research was financed by the Swedish Re-
search Council, the Swedish National Energy Admin-
istration, and Sydkraft AB. Thanks are due to Jan
and Ulla Holst and especially to Axel Franke for en-
lightening comments on the manuscript.

Appendix A: Symbols Used in This Paper

1. General Designations

A Stochastic variable
Aij Stochastic variable for the ith cluster �setting�;

jth value �replicate�
a The name of a physical quantity or

A concrete number such as
an observation of a stochastic variable, e.g., xij;
a parameter of the distribution of a stochastic

variable, e.g., li, �Li, �1i, �2i;
a parameter in function f, e.g., a, b;
a variable of a PDF, e.g., xij, y�i

a0 Predefined value of a in the Monte Carlo simu-
lations

��A� Expectation of A
��A� Variance of A

��A, B� Covariance of A and B
Â Estimator of a

aT Transpose of vector or matrix a

2. Specific Symbols

E�k� Measurement noise from detector k
fi Generic function describing the dependence of

the generated signal on the laser intensity for
setting number i

L Laser intensity
� Likelihood function

mi Number of points in cluster i
n Number of clusters

���, �2� Normal distribution with expectation � and
variance �2

p PDF
�i Covariance matrix of Xij and Yij; cf. Eq. �10�.

The distributions of Xij and Yij do not depend on
j

Ûi Estimator for �i �not used in the text�
ûi Sample covariance matrix, estimate for �i �i.e.,

observation of Ûi�
X Observed laser intensity
Y Observed signal intensity

Appendix B: Fitting Schemes

In curve fitting there are several well-established
schemes, which provide ML estimators only if certain
conditions are fulfilled.

In WLSQ fitting, statistical independence is as-
sumed for different data points but also for the mea-
sured quantities Xij and Yij �for denotations see Section
2�. Furthermore, the statistical variations of Xij and
Yij are assumed to be normally distributed, with vari-
ances �xi

2 and �yi
2 , respectively. For these conditions

the method of ML leads to the minimization of

�2 � 
i�1

n


j�1

mi � xij � li�
2

�xi
2 � 

i�1

n


j�1

mi � yij � f �li�	
2

�yi
2 . (B1)

Here xij and yij are experimental data, whereas li
and the unknown parameters of f are to be optimized.
The �xi and �yi are assumed to be known. WLSQ
fitting is a special case of covariant WLSQ fitting
�compare Eq. �B1� and Eq. �15� for ��Xi, Yi� � 0	.
This variant of WLSQ fitting is used in Section 4.

The unweighted LSQ fitting scheme is obtained
when all �xi and �yi are equal; say, �x and �y, respec-
tively. Then the factor 1��x

2 can be removed outside
the sums and we obtain ML estimators from mini-
mizing the following expression:

�2 �
1
�y

2 ��2 
i�1

n


j�1

mi

� xij � li�
2 � 

i�1

n


j�1

mi

� yij � f �li�	
2� ,

(B2)

� :�
�y

�x
. (B3)

Note that only the ratio � has to be known, because
one only has to minimize the expression in braces.

If the uncertainties of the x values are negligible,
the first sums in Eqs. �B1� and �B2� disappear, as does
the necessity to optimize li, and �2 becomes simply

�2 � 
i�1

n


j�1

mi � yij � f � xij�	
2

�yi
2 , (B4)

or

�2 �
1
�y

2 
i�1

n


j�1

mi

� yij � f � xij�	
2 (B5)
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for WLSQ or unweighted LSQ fitting, respectively.
The latter is the variant of LSQ to which we refer in
this paper as simple LSQ.

When the relationship between x and y follows a
power function such as y � axb, one frequently
fits—in the LSQ sense—a straight line to the loga-
rithms of the data, as ln y � ln a � b ln x. In this
paper we call this method the log–log fitting scheme.
This way of fitting is much easier to perform, because
the optimization problem is linear in ln a and b. For
statistical reasons the log–log method can be doubt-
ful, because the logarithms of the data have to fulfill
the conditions necessary for LSQ to provide ML esti-
mators, in particular, normally distributed errors
and constant standard deviations. These deviations
of the logarithms correspond to constant relative er-
rors �e.g., �yi���Yi� � constant	. The validity of
these assumptions has, of course, to be confirmed
before one uses the method. Moreover, the loga-
rithms of the observed intensities are biased estima-
tors for the logarithms of the true intensities, which
yield bias on the fitting parameters.23 In general,
one should be careful when fitting treated data �here,
the logarithms of x and y�, and use of the original data
should be preferred.

In Table 1 several fitting schemes and the condi-
tions for which they provide ML estimators are sum-
marized.

Appendix C: Method of Monte Carlo Simulation

The method of Monte Carlo simulation can be sum-
marized as follows: First, one defines a model func-
tion f, the parameters of which one derives to be
estimated. One proceeds by choosing typical exper-
imental values for the input variables of the statisti-
cal model, in our case laser intensities li as well as the
model parameters in f and the standard deviations
��Li, �1i, and �2i� in the statistical model. All these
values can be estimated by analysis of a measure-
ment sample or by use of typical values from the
literature.

With the aid of a random-number generator and
formulas �1�–�5�, one produces data sets �xij, yij�.
�For the simulations in this paper a value of mi � 100
laser shots was chosen for all i.� Then one uses the
fitting schemes listed in Appendix B to calculate es-

timated values for the parameters in f from each
simulated data set.

The generation and fitting are repeated several
times, and the estimated parameters are stored.
For the results presented in this paper a number of
thousand runs was chosen, which ensures sufficient
precision for median and variance of the estimated
parameters. The distribution of the estimated pa-
rameters provides a measure of their precision and
accuracy.

Appendix D: Box-and-Whiskers Plots

The box-and-whiskers plot was invented by Tukey24

to illustrate the statistical distribution of the values
in a sample. Compared to plotting all the single
sample values directly, the box-and-whiskers plot
shows more clearly the important features of the dis-
tribution.

In a box-and-whiskers plot the data are repre-
sented by a geometrical figure, as shown, e.g., in Fig.
8. This figure indicates the following properties of
the distribution: The lowest 25% of the sample val-
ues lie under the lower edge of the box, and the high-
est 25% lie above the upper edge. Thus 50% of all
values lie within the box. The values that corre-
spond to the edges of the box are called the quartiles;
the height of the box, the interquartile range.

The horizontal line that divides the box into two
parts indicates the position of the median. Above
this line lies 50% of the sample; below it, the other
50%. Thus the upper and the lower parts of the box
contain 25% of the sample values each.

The vertical lines above and below the box are the
so-called whiskers. Each of them extends to the
greatest and least data value whose distance from the
box is at the most 1.5 times the height of the box.
For a normal distribution the maximum range that
can be spanned by the box and the whiskers together
is expected to contain 99.3% of the sample values.
Data points lying beyond the edges of the whiskers
are considered outliers and are plotted directly.

In the experiments reported here the box-and-
whiskers plot is used mainly to compare the scatter-
ing and the median of estimated parameters from
Monte Carlo simulations. In this way the precision

Table 1. Fitting Schemesa

Fitting Scheme Condition LSQ WLSQ

Covariant WLSQ

No BC BC

Equation �B2� �B5� �B1� �B4� �15� �20�
All standard deviations equal x x
Variations�uncertainties of x and y independent x x x x
Normally distributed errorsb �x� �x� �x� �x� �x� �x�
Variation in x negligible x x
f linear in l x

aCrosses mark the necessary conditions for which a fitting scheme provides ML estimators for the unknown parameters. BC, bias
correction.

bParentheses mean that the normality assumption is not mandatory if the number of data points per cluster is large. See also
Subsection 3.C.
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and accuracy of the corresponding estimators can be
compared.
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20. W. Demtröder, Laser Spectroscopy �Springer-Verlag, Berlin,
1996�.

21. A. C. Eckbreth, Laser Diagnostics for Combustion Tempera-
ture and Species �Overseas Publishers, Amsterdam, 1996�.

22. E. L. Dereniak and D. G. Growe, Optical Radiation Detectors
�Wiley, New York, 1984�.

23. W. J. Thompson and J. R. Macdonald, “Correcting parameter
bias caused by taking logs of exponential data,” Am. J. Phys.
59, 854–856 �1991�.

24. J. W. Tukey, Exploratory Data Analysis �Addison-Wesley,
Reading, Mass., 1977�, pp. 39–41, 44.

20 March 2003 � Vol. 42, No. 9 � APPLIED OPTICS 1563


