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Abstract. We present an imaging, image processing, and image analysis framework for facilitating the separation
of flow and chemistry effects on local flame front structures. Image data of combustion processes are obtained
by a novel technique that combines simultaneous measurements of distribution evolutions of OH radicals and of
instantaneous velocity fields in turbulent flames. High-speed planar laser induced fluorescence (PLIF) of OH radicals
is used to track the response of the flame front to the turbulent flow field. Instantaneous velocity field measurements
are simultaneously performed using particle image velocimetry (PIV). Image analysis methods are developed to
process the experimentally captured data for the quantitative study of turbulence/chemistry interactions. The flame
image sequences are smoothed using nonlinear diffusion filtering and flame boundary contours are automatically
segmented using active contour models. OH image sequences are analyzed using a curve matching algorithm that
incorporates level sets and geodesic path computation to track the propagation of curves representing successive
flame contours within a sequence. This makes it possible to calculate local flame front velocities, which are strongly
affected by turbulence/chemistry interactions. Since the PIV data resolves the turbulent flow field, the combined
technique allows a more detailed investigation of turbulent flame phenomena.
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characterized turbulent flames. Local flame instabilities
are always the consequence of an interaction between

1. Introduction

Understanding the stability of turbulent non-premixed
flames is both of fundamental and practical importance
because of their widespread appearance in technical
applications. To increase the understanding of turbu-
lence and chemistry interaction phenomena such as
local flame extinction, flame stabilization and liftoff,
experimental studies have to be performed in well-

fluid motion and flame chemistry and their understand-
ing has far reaching implications in the design of next
generation technical combustion devices, such as aero
engines and low pollution gas turbines. In the past,
turbulent combustion research has mostly focused on
the measurement of temporally uncorrelated events.
Such data can be used for the construction of PDFs
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(probability density functions) and comparisons with
RANS (Reynold averaged Navier Stokes) modeling
approaches. However, since turbulence is inherently a
time-dependent phenomenon, model construction will
ultimately benefit from the provision of time correlated
measurement data. Very few experiments have been
done in this respect, owing to the extreme complexity
of the measurements and subsequent data evaluation.
Point measurements of time correlated quantities in tur-
bulent flames have recently been reported by Renfro
et al. [26] using an 80 MHz repetition rate Ti:Sapphire
laser system. Double pulse line images of majority
species and temperature in turbulent jet flames have
been recorded by Brockhinke et al. [S5]. Two dimen-
sional double pulse imaging techniques have also been
employed, for example, to measure the temporal devel-
opment of OH concentration fields from which turbu-
lent fluctuation time scales could be measured [3, 12].
Longer sequence recordings of turbulent reactive flow
structures have been reported by Winter and Long us-
ing Mie scattering of aerosols seeded into the fuel [30].
Similarly OH and O, were imaged at low repetition
frequencies (250 Hz) by Kychakoff et al. [21]. High
quality high repetition rate planar laser induced fluo-
rescence (PLIF) image sequences of flame-produced
radicals can nowadays be recorded at repetition rates
exceeding tens of kHz [11, 17]. Combination of PLIF
and particle image velocimetry (PIV) measurements
that were simultaneously performed on a single shot
basis has also been demonstrated [13, 28].

This paper presents a novel technique that combines
simultaneous measurements of OH radical distribu-
tions and of instantaneous velocity fields in turbulent
flames. High speed PLIF of OH is used to track the
response of flame fronts to turbulent flow fields. In-
stantaneous velocity field measurements are simulta-
neously performed using PIV where small particles are
seeded in fluid flows in order to trace their motion. Mea-
surements of both velocity and species concentrations
(captured at the same time) allow detailed studies of
the interaction between flow and chemistry in turbu-
lent flames.

The resulting experimental image data create large
demands on data reduction, image processing and im-
age analysis techniques. A number of image process-
ing techniques have been reported in the literature for
studying structures and velocities in flame images ob-
tained by PLIF. Widely used tools for segmenting flame
fronts include simple and adaptive thresholding. One
way for setting the threshold values is to study the

image intensity histograms [27]. However, these sim-
ple approaches do not work well in complex cases often
resulting in loss of details or appearance of disconti-
nuities (holes) in the segmented structures. Other ap-
proaches include using spatial image gradients rather
than intensities for setting the threshold values [20].
Nonetheless this still suffers from the problems of
determining the correct thresholds and usually result
in contour gaps and noise falsely detected as signal.
Other techniques used for studying the properties of
flame contours or surfaces include deploying fractal ge-
ometry concepts for describing wrinkled flame fronts
[7, 15]. These methods have been used to provide
estimates of turbulent flame velocities [14] neverthe-
less they introduce difficulties including the determi-
nation of correct fractal parameters such as the fractal
dimension.

This paper focuses on computational methods for ex-
tracting flame front velocities from our experimentally
captured OH-PLIF data and quantitatively comparing
them with flow field velocities extracted from the PIV
measurements. The techniques can be used to study the
dynamics of turbulence and chemistry interactions in
real time. OH image sequences are analyzed to extract
the flame front velocity, which is a function of both
global flow and chemistry effects. The flame images
are first smoothed using non-linear diffusion filtering
for enhancement and noise reduction. They are then
segmented using active contour models (snakes) and
their resulting boundary curves subsequently matched
in order to reconstruct the flame’s motion between suc-
cessive experimental frames and to estimate flame front
velocities. In [ 1] we propose an approach for flame front
velocity estimation employing a frequency-domain in-
terpolation scheme. Here, we propose a more sophisti-
cated technique where velocities are estimated through
a curve matching procedure based on the calculation of
geodesic paths between curves that are level set repre-
sentations of flame boundaries. This enables successful
handling of sharp edges, cusps, as well as topologi-
cal changes in flame structure which were previously
difficult to accomplish. Lastly, the flow velocities ob-
tained through simultaneous PIV measurements are
subtracted from the flame front velocities thus allowing
for chemical timescales to be isolated.

2. Experimental Aspects

A schematic diagram illustrating the experimen-
tal set-up for the simultaneous OH-PLIF and PIV
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Figure 1. Experimental set-up used for simultaneous measurements of time-resolved OH concentrations and flow fields. The OH-PLIF system

is shown to the upper left and the PIV system is shown to the lower right.

measurements is shown in Fig. 1. The flames imaged
in this study are non-premixed flames stabilized on a
co-flow burner that consists of an 8 mm inner diame-
ter tube with a thinned rim at the exit, surrounded by
a concentric contoured nozzle with an inner diameter
of 140 mm. A mixture of H, (33.2% by volume), CHy
(22.1%), and N, (44.7%) is used as fuel. The exit veloc-
ity of the fuel jetis 55 m/s, corresponding to a Reynolds
number of around 20,000. The surrounding co-flow of
air has an exit velocity of 0.3 m/s. Both fuel flow and
co-flow are seeded with 1 pm titanium (TiO,) parti-
cles. The OH-PLIF signal is detected at right angles
using a high-speed camera. A cell filled with fluoresc-
ing dye solution is used to perform online beam profile
measurements. This makes the beam profile informa-
tion available simultaneously with the OH-PLIF image
for subsequent compensation for laser profile fluctua-
tions. A cylindrical lens telescope is used to create the
PIV laser sheet and to direct it into the flame. The PIV
camera is positioned in a direction normal to the laser
sheets, and on the opposite side of the burner to the
PLIF camera. Details on the experimental setup and
the obtained measurements are reported in [16]. A brief
description of the imaging procedures is given in the
following two sections.

2.1. OH-PLIF Measurements

The OH-PLIF image data sequences are obtained us-
ing a high-speed laser and detector system described in

detail in [10, 11, 17]. The principle of PLIF is to form
a light sheet that traverses the flame from a laser beam
using suitable optics. When the wavelength is tuned to
match a molecular resonance line of OH then light from
the sheet is inelastically scattered from the OH radicals
present in the interaction region. This scattered light is
detected using CCD camera arrangements. The laser
pump source is an Nd: YAG laser cluster consisting of
four individual laser heads. By firing the individual
lasers in series a very fast burst of four laser pulses could
be obtained with time separations varying from ~5 ns
up to 100 ms between consecutive pulses. The pulse
train from the Nd: YAG laser cluster pumps a commer-
cial tunable dye laser operating on Rhodamine 590 dye
the output of which was frequency doubled to obtain
radiation in the wavelength region where OH absorbs.
The PLIF detector is a high-speed framing camera con-
sisting of eight individual CCD cameras. Signals are
collected via a common optical input and split into
eight identical copies, which are relayed to the individ-
ual cameras (only 4 were used in the present study). By
using short exposure times and by exposing the eight
cameras in series, an image sequence could be cap-
tured with an interframe time resolution as low as 10 ns
(theoretically possible although in practice this is not
needed for technical flows). Example sequences of
the captured images are shown in Fig. 2 (premixed
flame) and Fig. 3 (diffusion flame). The local inten-
sities in the recorded image sequences are a function
of the local OH concentration in the flame. Since OH is
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Figure 2. A premixed flame sequence. (a)—(d) Four frames captured with 1.7 millisecond interframe interval.

Figure 3. A diffusion flame sequence. (a)—(d) Four frames captured with 125 microsecond inter-frame interval.
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formed in the reaction zone of the flame and is rapidly
quenched by cold unreacted gases, it is a good indi-
cator of the flame front position where the reaction
zone is thin. In hot combusted gases, OH is removed
more slowly, and a certain equilibrium concentration
prevails depending on local temperatures and burnt gas
composition.

2.2.  PIV Measurements

Light from two Nd:YAG lasers is combined and
frequency-doubled to generate two green light pulses.
Mie scattering signals from seeded TiO, particles are
detected using a CCD camera. The scattered light is
registered as two individual images by the single CCD
camera, which is of frame transfer type. The 2-D flow
field could be deduced from each pair of PIV images
by applying a cross correlation technique using the
Dantec PIV2000 processor and Dantec FlowManager
software. More details on this are reported in [16].

3. Image Processing and Analysis
3.1. Non-Linear Diffusion Filtering

To improve signal to noise ratios in OH-PLIF im-
age sequences the images are smoothed using non-
linear diffusion filtering or edge preserving filtering.
The method is based on the original approach formu-
lated by Perona and Malik [25]. The principle is to
smooth out noise locally by diffusive flow while at the
same time prevent flow across object boundaries. By a
proper choice of the diffusion kernel, object boundaries
may be enhanced and physical gradients sharpened
hence simplifying subsequent localization of object
boundaries.

Diffusion can be thought of as the physical process
that equilibrates concentration differences without cre-
ating or destroying mass. Mathematically, this is de-
scribed by Fick’s law

j=-D-VI (1)

where the flux j is generated to compensate for the con-
centration gradient V/, and D is a tensor that describes
the relation between the two [29]. Using the continu-
ity equation (conservation of mass) d,(1) = —div(j) we
get

3,(I) = div(D - VI). )

However, the solution of the linear diffusion equation
with a scalar diffusivity D =d, 9,1 =div(dVI), turns
out to be the same operation as convolving the concen-
tration image I with a Gaussian kernel of width \/Z .
Perona and Malik proposed to exchange the scalar dif-
fusion constant d with a scalar valued function g of the
gradient of the gray levels in the image. The diffusion
equation then becomes

3,1 = div(g(VIDVI). A3)

The length of the gradient vector |V /] is a good mea-
sure of the edge strength of the current location, which
is dependent on the differential structure of the image.
This dependence makes the diffusion process nonlin-
ear. In our case the imaged data is filtered using the
equation

01 = div(g(|V(Go * DVI) “

where [ represents the intensity of the image under
consideration, and g(|V(G, * I)|) represents a locally
adaptive diffusive strength. The latter is made inversely
proportional to the gradient VI in the image itself af-
ter smoothing with a Gaussian kernel G, of width o,
which is done for stability reasons [6]. As a diffusivity
function we use

_Cm

g(s) =1 exp( T m,,,) ®)
where m is a positive integer and C,, > 0 is a con-
stant whose value determines the direction of the flux
function m = 8 and C,, = 3.315 are used here).
A > 0 acts as a contrast parameter separating regions
of forward diffusion from regions of backward diffu-
sion. In practice we achieved good results by setting
A to 70% of the minimum edge strength we wish to
preserve and o within the interval 0.5-1. Full details of
the numerical implementations as well as the criteria
for parameter selection are described in [22]. Figures
4 and 5 show example results obtained by non-linear
smoothing of flame image sequences as described
above.

3.2.  Flame Segmentation

Active contour models (ACM) or snakes [18] are used
to segment the flame structures in order to identify
flame front boundaries (used as input to the curve
matching algorithm as will be described in the next



204 Abu-Gharbieh et al.

iah 4]
ich

idi
Figure 4. Smoothing the images of Fig. 2 using non-linear diffusion filtering.
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Figure 5. Smoothing the images of Fig. 3 using non-linear diffusion filtering.
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section). An initial flame contour is represented by a
number of nodes (comprising a snake) and is itera-
tively deformed by applying different ‘forces’ on its
nodes thus driving the snake towards the object to be
segmented. The fundamental equation used to sim-
ulate the deformations of the discrete snake contour
is

Mvi + 7/“’[ + aF;ensile 4 IBF?exural — F?xternal + F%nﬂation
(6)

where v; (1) = (x; (1), y;(t)) are the locations of the snake
vertices (i.e. coordinates of nodes). i = 1,2,..., N
where N is the number of nodes, v and V are the first
and second time derivatives of v, u is the mass, and y is
a damping coefficient. ¢ and B are weighting factors,
and F;ensile’ Ff]exural7 F?xternal’ F}nﬂation are the different
forces deforming the snake.

In static image segmentation scenarios the mass p
is often set to zero and a finite difference derivative
approximation v; = (v;(f + At) — v;(t))/ At is used
where At is a finite time step. This yields the follow-
ing equation for updating the position of any snake
node i

At " .
vi(t + At)=v;(t) — 7(O[F;ensﬂe(t) + ﬁF?exuml(t)
_ F?X[Cmal(t) _ F}nﬂation(t))' (7)

Fiensile(r) = 2v;(¢) — v;_1(t) — vip1(?) is the tensile
force acting on node i at time ¢, which resists stretch-
ing. F?exural(t) — ZFECHSHC(I) _ FEell?ile(t) _ FET?ile(t) is
the flexural force, which resists bending. Ff"‘er"a'(t)
is an external image-derived force that causes the
snake nodes to move towards regions of higher
intensity gradients in the image and is given
by F;”X‘em“l(t) = VP(x;(t), yi(t)) where P(x,y)
—|IVIi(x, y)|| and I;(x, y) is the intensity of the pixel
(x,y) in a smoothed version of the original image.
Finflation (1) — F(I,(x;, y;))m;(¢) is the inflation force,
which enables the initialization of the snake farther
away from the target boundary, and n; (7) is a unit vec-
tor in the direction normal to the contour at node i. The
binary function

+1 if I (x, >T
F(I(x,y»:{ ) 8)

—1 otherwise

links the inflation force to the image data where T
is an image intensity threshold. The values used here

area =1, =0.5,and T = 80% of the maximum im-
age intensity which are kept the same for all images.
Details of the segmentation procedure are reported in
[1]. Figure 6 illustrates an example of the progress of
snake iterations as it moves towards the flame bound-
ary. More segmentation examples are shown in Figs. 7
and 8.

4. Flame Front Tracking

A contour matching algorithm is employed to track
evolving flame fronts extracted from OH-PLIF im-
age datasets. The method is based on the computa-
tion of a set of geodesic paths connecting two curves
on a cost surface [2]. The curves are implicitly rep-
resented using level sets, which facilitates the han-
dling of complex curves especially those with sharp
edges and cusps, and also allows for arbitrary topo-
logical changes in the curve structure. An additional
term is incorporated in the cost function, on which
the optimal paths are computed, which steers land-
mark point pairs with established correspondence to be
matched.

4.1. Locating Optimal Paths

In [9] it is shown that geodesic paths between a set
of source contour points, S, and a set of destination
contour points, D, on a surface Z = (x, y, z(x, y)),
are those that minimize a certain cost function f(x, y)
along their path. In order to obtain matching routes
between the two curves S and D, this cost function must
characterize the similarity between them, and must also
enable the matching to be symmetric, i.e. the optimal
paths obtained using this function should be the same
whether S is matched to D or vice versa. One such
function is

fx,y)=Ds+ Dp )

where Dg and Dp are the geodesic distance maps of
S and D, respectively. In order to calculate Dg and
Dp, the ideas developed by Kimmel et al. are uti-
lized. In [19] it is proven that the evolution of the equal
geodesic distance contour of a curve on the surface Z
(if restricted to graph surfaces) is given by

a (s, t) = \/an% + bn3 — cnynait (10)
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Figure 6. Progress of snake iterations. (a) Original raw image. (b) Initial snake initialized on the non-linearly diffused image. (c)—(e) Snake
after 1, 25, and 85 iterations, respectively. (f) Final snake segmentation result overlaid on the original raw image.

where 1 = (n, ny) is the normal to the contour. a, b,
and c are coefficients that depend on the gradients of
the surface on which the geodesiczpaths are to be calcu-

lated and are given by a = —54 p = 2 ang
5 g y ) (1+1),2+q27 814’(,p24§q2’
— g _ _ dax.y) B HES)]
C= gt where p = == and g = I

4.2. Level Set Representation

In the previous section, it is shown that the evolution
of the equal geodesic distance contour depends on the
curve’s parameterization. Since estimating the normal
components using derivatives becomes inaccurate and
unstable with complex curves, a non-parametric rep-
resentation of the curve is needed. By incorporating a
level set representation of the curves to be matched,
the resulting equivalent evolution equation thus
becomes

b = \Jag? + b2 — ., (1)

where ¢ is a three-dimensional function that evolves
such that its zero level set tracks the evolving curve

a(s), i.e.

als, 1) = ¢~ '(0). (12)

The two geodesic distance maps Dg and Dp can
now be defined by solving the propagation Eq. (11) on
a graph surface Z twice, once for S and once for D,
suchthat Dy = ¢(x, y) and Dp = ¥ (x, y). The signed
Euclidian distance maps ¢ and v of the curves S and
D, respectively, are used as initial estimates [4]. The
graph surface Z on which these geodesic distance maps
are computed has to be the same for the computation
of both maps in order to define a similarity measure
between S and D. Z should also have both S and D as
zero level sets. One such surface is

Z(x,y, z(x, y)) = min(|¢ol, [¥ol) 13)

Modifications to the graph surface can be incorporated,
for example, to allow for geometrical properties of
the curves to be taken into account. This is helpful
when geometric similarities exist between the matched
curves, however, there is a limited range over which
the geometrical similarity is considered [8].
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Figure 7. Segmenting the images of Fig. 4 using ACM. The results are overlaid on the original images of Fig. 2.

Figure 8. Segmenting the images of Fig. 5 using active contour models. The results are overlaid on the original images of Fig. 3.
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Since the minimal paths are orthogonal to the equal
distance contours, they can be reconstructed by start-
ing on a point on the source contour and moving in
the direction of the gradient of the cost function until
reaching the destination curve. The path is thus defined
by a parameterized curve p(s) such that

0
a—p = —Vf(x,y). (14)
S

In our implementation, the gradient of the cost function
is smoothed using a 2D-Gaussian kernel, which gives
more plausible and robust results.

4.3.  Matching with Point Correspondence

To improve the quality and stability of the matching
results when geometrically similar feature points on
the curves have moved over a wide range, we propose
adding an additional term, D¢, to the cost function
f(x, y). This term steers the algorithm into matching
certain distinctive landmarks when their correspon-
dence can be accurately identified.
We define D¢ as

N
De(x,y) =Y wilx, y)(Dp, (x, ¥) = Dy, (x, 1)

i=1

15)

where (p;1, pi2) = ((xi1, yi1), (xi2, yi2)) is the i pair

of landmark points to be matched and D, and D,

are their Euclidean distance maps. N is the number of
pairs used. w;(x, y) is a weighting factor incorporated
in order to localize the effect of the matching term,
i.e. to attenuate its effect as the distance to (p;i, pi2)
increases and is defined as

wi(x, y) = a(dy,(x, ) +dpfx, )" (16)

where « and 8 are positive constants, and d), (x, y) =
V& = x>+ (v — yij))% j = 1,2. The values used
here are « = 2.5 and g = 0.4.

D¢ can be viewed as adding new components to the
cost function that act as a field steering corresponding
landmark pairs to each other, see Fig. 9. Accordingly,
the cost function becomes

f(x,y)=Ds+ Dp+ Dc. (17

The pairs of points to be matched can be identi-
fied either manually or automatically. Here an auto-
matic algorithm for critical point detection (CPD) on a
simple closed 2-D object boundary is used [31]. This
CPD algorithm does not require curvature estimation
or Gaussian filtering, instead, a set of candidate points
called pseudo critical points (denoted C,) is initially
generated from the original boundary curve. This is
done by first transforming the curve points to polar co-
ordinates thus obtaining two one dimensional curves,
p(s) and O(s). C, is then defined to be the set of points
where p and 6 have local minima or maxima. Assigned
to each point in C, is a critical level defined by the
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Figure 9. Matching a pair of corresponding points. (a) The additional cost term D¢ in the vicinity of (p;, pi2). (b) The gradient V D¢, which

acts as a field steering p;1 to pi2.
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(a)

(b)
Figure 10. CPD applied to flame boundary contours of (a) Fig. 7(d) and (b) Fig. 8(c). Original curves (dashed) and the critical points (connected

dots).

=2
=2
W =2
;'5'\}&\ > %-/{2 '/-ﬁ;’

gf ‘..--.c_rfl

g
N
N\

=

S
S
N

Figure 11.

Matching paths of flame contours extracted from the two frames (b and c) in the diffusion flame sequence shown in Fig. 3 without
incorporating point correspondence.

area of the triangle formed by that point and its two

levels higher than a specified level. An example illus-
pseudo critical neighbors. The points with the low- trating this is shown in Fig. 10.
est critical level are then deleted recursively until only

An example illustrating the matching paths without
the “true” critical points remain, i.e. those with critical

incorporating point correspondence is shownin Fig. 11.
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Figure 12. Improving the matching results shown in Fig. 11 by incorporating two pairs of corresponding points (marked as black dots).

Figure 12 illustrates the improvements of the matching
results when the proposed point correspondence term
D¢ is incorporated within the matching cost function.

5. Velocity Measurements

At this point, it is possible to extract the flame front
and the flow field velocities for conducting quantitative
comparisons.

5.1.  Flame Front Velocity

As matching paths between consecutive flame front
contours in OH-PLIF image sequences are traced,
flame motion can be reconstructed between experimen-
tally captured frames and flame front velocities can
be estimated. Assuming constant contour node veloc-
ity between a pair of consecutive frames, velocities
are obtained by dividing the distance traveled by each
node of the flame contour by the time it takes to move
that distance (which is the original inter-frame interval
applied while conducting the experiments). Figure 13

shows the calculated flame front velocities for the se-
quence shown in Fig. 3 where the velocity values are
illustrated as a color-coded map.

5.2. Flow Field

PIV methods have developed rapidly over the past
years as recording and evaluation techniques moved
from analog to digital platforms. Fast digital cameras
have replaced the initial analog methods that use pho-
tographic films and optical correlation methods. In PIV
the velocity is calculated from the measured displace-
ment of fluid elements in a known time. In order to
accomplish this, the flow is seeded with small particles
(~um TiO, particles in our case) that trace the motion
of the fluid. A pulsed laser is used to obtain images of
the seed particles by firing it twice with a suitable time
interval in between. This way, two images are acquired
with a CCD camera (as described earlier), which are
then processed to find the velocity vector map of the
flow field.

The processing starts by first dividing the two im-
ages, Im) and I m,, into small areas called interrogation
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Figure 13. Flame front velocities estimated from the OH-PLIF image sequence shown in Fig. 8 (frames b and c). The color-bar to the right
shows the velocity values in m/s.

Figure 14. Flow field vector map estimated from the PIV image data corresponding to the sequence of Fig. 3 after mean subtraction of a 9 m/s
vertical velocity for better visualization. The scale is shown to the upper left.
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regions, then the displacement of groups of particles
within each interrogation region is measured using a
correlation technique. The cross correlation function
determines the match between local regions at differ-
ent time steps and is discretely defined by

M/2 N/2
R, y)= Y Y ImG, HImaGi+x.j + )
i=—M/2 j=—N/2

(18)

where M and N determine the size of the interrogation
region and are usually equal. The positions of the peaks
in R are then used to determine the displacements.
From these displacements the velocity vectors are

calculated in each region and the complete 2D velocity
vector map is determined.

Full details of the methods used for the PIV mea-
surements are reported in [16]. Briefly, the PIV images
were divided into interrogation areas of 32 x 32 pix-
els corresponding to volumes of 0.7 x 0.7 x 0.4 mm?>.
62 x 62 velocity vectors were produced with a 50%
overlap between regions giving a spatial vector resolu-
tion of 0.35 mm. The instantaneous vector maps were
processed using a 4 step validation chain, described in
detail in [16], which removed erroneous vectors. The
subject of PIV measurements and issues specifically
related to measurements in combusting systems can be
found in [24]. For a comparison of different velocity
mapping processing techniques see [23].

anca (PIV)

Figure 15. OH-PLIF vs. PIV velocity vector comparisons at the flame front. The thick black curve is the source and the dotted curve is the
destination. The white arrows are the flow field vectors, the dotted arrows are the flame front velocity vectors, and the solid black arrows are the

difference vectors. The scale is shown to the lower right.
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Finally, the OH images are remapped to the co-
ordinate system of the PIV images and the velocity
vectors are plotted on top of the corresponding OH im-
age. An example of the resulting velocity vectors for
the sequence shown in Fig. 3 is shown in Fig. 14.

6. Results

Now that both the two-dimensional flow field (from
the PIV images) and the flame front velocities (from
the OH-PLIF images) are separately measured, it is
possible for the first time to make direct comparisons
between the two. Turbulence can greatly enhance the
rate at which chemical species proceed to react by in-
creasing the mixing rates of reactants. However ex-
cessive strain on the flame front, caused by turbulent
convection can also have the opposite effect: The flame
front thins, and radiative losses can lead to flame ex-
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tinction. The event witnessed in the sequence shown
in Fig. 3 is precisely of that nature. Although it is
clear that flame extinction is taking place in this se-
quence, it is interesting to compare the physical mech-
anisms leading to this event in more detail. The pre-
sented techniques allow a more precise interpretation
of the physics behind turbulent flame extinction than
has been possible before. Figure 12 clearly shows how
the flame front is moving as the extinction process
is taking place. The source curve shows a connected
flame front that is heavily stretched. This can be ob-
served from the solid lines that show the estimated
trajectories of points within the flame front as it pro-
ceeds through the extinction event towards the topolog-
ically altered destination curve. This stretching thins
the flame front at a rapid rate as can be seen from
the color-coded map in Fig. 13 (white: highest veloc-
ity). Since the flame front velocity values reflect the
global flame motion, which is a consequence of both
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Figure 16.

Visualization of intermediate frames within the experimentally captured image sequence of Fig. 3 (between frames b and c).
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Figure 17. Another example of diffusion flame sequences. (a)—(d) Four frames captured with 75 microsecond interframe interval.

turbulent convection and chemical reactions, one way
to compare the results is to subtract the fluid flow ve-
locity (obtained from PIV) from the local flame front
velocity (obtained by the geodesic path analysis). The
results are shown in Fig. 15. Frame interpolations are
shown in Fig. 16. The directional variations between
the flame front velocity vectors and the difference vec-
tors (i.e. the flame front velocities from which the fluid
flow is subtracted) give an indication of the effect of
convection on the flame front. Near the region of the
extinction event, the two sides of the ‘OH braid’ are
rapidly approaching each other, leading to the flame
front thinning effect discussed. In this region the fluid
flow and the flame front movement are carrying com-
bustible mixture into an ever more thinning region. The
opposite effect is observable in the region above the
extinction event, in the upper left quadrant of image.
Such effects can only be visualized with the current
approach.

Our proposed algorithms were tested on a number
of different image sequences. Figure 17 shows another
example illustrating a diffusion flame sequence. The
four frames, captured with 75 microsecond interframe
interval, depict an extinction event of a thinning flame.

Figure 18. Curve matching of flame fronts extracted from
Fig. 17(b) and (c). (a) Matching paths. (b) Interpolated curves (gray
colors) between the original flame fronts (black).



Level Set Curve Matching and Particle Image Velocimetry for Resolving Chemistry 215

Figure 18 illustrates the curve matching process of
the flame fronts extracted from Fig. 17 (b) and (c).
Figure 18(a) shows the matching paths obtained us-
ing our proposed technique while Fig. 18(b) shows
the resulting interpolated curves (drawn in gray col-
ors) between the original flame fronts (drawn in
black).

Figure 19(a) presents the resulting flame front ve-
locities estimated from the OH-PLIF image sequence.
In Fig. 19(b) we show the flow field vector map esti-
mated from the PIV images after the subtraction of a
24 m/s mean vertical velocity for better visualization.
Figure 20 illustrates the obtained measurements of the
flame front velocity vectors, the PIV vectors, and the
difference vectors for the sequence.

7. Discussion and Conclusion

We show how OH-PLIF images of combustion flames
can be analyzed to study the effects of turbulent flow
fields on the reaction zone structure. We present im-
age analysis techniques suitable for studying real time
temporal image data sequences obtained by a combi-
nation of two measurement techniques for the purpose
of decoupling chemistry interaction effects from turbu-
lence effects in diffusion (non-premixed) flames. The
capability of tracking flame contours in time as shown
here, for the first time, facilitates the study of flame dy-
namics. For instance, once the contours are matched,
the matching paths can be used to visualize interme-
diate frames within the experimentally sampled image

R e e e

Figure 19. (a) Flame front velocities estimated from the OH PLIF image sequence. The color bar to the right shows the velocity values in m/s.
(b) Flow field vector map estimated from the PIV image after the subtraction of a 24 m/s mean vertical velocity for better visualization. The

scale is shown to the upper left.
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Figure 20. Velocity measurements for the sequence of Fig. 17. The white arrows show the scale. (a) Flame front velocity vectors. (b) PIV

vectors. (¢) Difference vectors.

sequences (as shown in Fig. 16) and flame front ve-
locities can be estimated. The curve matching methods
presented here provide alternative methods to study the
movement of flame fronts subjected to turbulent flow
fields. This can be used for model development and val-
idation of technical combustion processes. In combina-
tion with standard flow velocimetry techniques such as
particle imaging velocimetry (PIV), the present tech-
nique provides a unique way to track the response of
the flame front in the presence of turbulence. Applica-
tions range from aero and automobile engine research
to the design of technical combustors used in industry
and for heating.

Although the presented techniques provide exten-
sive information on flow and chemistry interactions, it
must be remembered that they are confined to a single
measurement plane and thus cannot give consideration
to three-dimensional effects such as vortex motion in
and out of the measurement planes. Three-dimensional

measurement approaches (for example PLIF coupled
with stereo-PIV techniques) could yield further infor-
mation in this respect.
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