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Abstract:  The ability to quantify the fluorescence signals from multiply
labeled biological samples is highly desirable in the life sciences but often
difficult, because of spectral overlap between fluorescent species and the
presence of autofluorescence. Several so called unmixing algorithms have
been developed to address this problem. Here, we present anovel agorithm
that combines measurements of lifetime and spectrum to achieve unmixing
without a priori information on the spectral properties of the fluorophore
labels. The only assumption made is that the lifetimes of the fluorophores
differ. Our method combines global analysis for a measurement of lifetime
distributions with singular value decomposition to recover individual
fluorescence spectra. We demonstrate the technique on simulated datasets
and subsequently by an experiment on a biological sample. The method is
computationally efficient and straightforward to implement. Applications
range from histopathology of complex and multiply labelled samples to
functional imaging in live cells.
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OCIScodes: (170.3650) Lifetime-based sensing; (180.2520) Fluorescence microscopy.
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1. Introduction

It isbecoming increasingly common to use multiple fluorescent speciesto label biological sam-
ples. This permits one to unravel complex biological pathways within living systems, because
multiple, interconnected events can be tracked simultaneously and their spatial and temporal
dynamics can be followed. However, the interpretation of measurements from multiply labeled
sampl es presents a complex challenge because it is difficult to unmix the contributions of indi-
vidual fluorophores from theintensity of agivenimage pixel. Most biological fluorophoreshave
excitation and emission spectra with bandwidths of approximately 30 to 60 nm, and one always
faces the problem of spectral and spatial overlap between them. The likelihood of inadvertently
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exciting multiple fluorescent species at once is thus large, and this makes the interpretation of
the resulting images prone to error.

Ultimately, the goal is to recover the molecular fraction (i.e., the relative concentrations) of
each fluorescent species in every pixel location of the image. Thisis however not possible in
multiply labelled samples without additional independent measurements. Here we show how
one can combine several attributes of the fluorescence process, including lifetime, excitation
and emission spectra to permit the quantitative separation, or unmixing of a multiply labeled
samplewith aminimum of a priori information. Our method makes no assumption on the shape
of the fluorophore species’ excitation or emission spectra, or their degree of overlap. The only
assumption isthat their lifetimes differ.

We have recently shown how supercontinuum radiation can be used for spectrally resolved
confocal microscopy by providing excitation light that is continuously tunable across the vis-
ible spectrum and beyond into the near infra-red region [1][2]. We shall show here that such
excitation-wavelength resolved microscopy isideally suited to the present unmixing problem.

The pulse width of most supercontinuum sourcesisin thefsto psrange. Combined with their
high repetition rates (on the order of tens of MHZz) this means that they are ideal sources for
lifetime resolved imaging [ 3][4]. Here we use supercontinuum excited, spectrally resolved Time
Correlated Single Photon Counting (TCSPC) to provide multi-dimensional data asinput to our
unmixing agorithm. We acquire 4-dimensional datasets (two spatial dimensions, excitation
spectrum, and lifetime) to greatly enhance the contrast between multiple [abels.

Traditionally, unmixing has relied on measuring fluorescence emission using several chan-
nels, each covering a segment of the emission spectrum. Prior to imaging a multiply labeled
sample, a‘calibration’ is performed from which the contribution of each fluorophore speciesto
each emission channel can be calculated. A sample labelled with several fluorophore species
can then be quantitatively unmixed using the calibration information. This method is known as
linear unmixing [5] and requiresat least N spectral emission channelsto resolve N fluorophores.
Linear unmixing isalso used in FRET quantification [6].

In contrast to linear unmixing, so called ‘blind unmixing’ agorithms seek to quantitatively
unmix a sample labeled with unknown fluorophores. Several methods have been proposed for
this purpose, such as PARAFAC [7], principle component analysis[8], and non negative matrix
factorization (NMF) [9]. These methods use various algorithms to unmix multiple fluorophores
in spectrally resolved microscopy images.

Here we present a novel method for blind unmixing that uses both spectral and lifetime dif-
ferences between fluorophores to differentiate them. Though demonstrated here for confocal
TCSPC image data, the method is equally valid for widefield, frequency domain FLIM meth-
ods, for emission resolved microscopy (in contrast to the excitation resolved microscopy we
use here), or combinations between the different approaches.

The method offers a powerful tool for biomedical research. We envisage applications ranging
from histopathology, where one seeks to differentiate between classes of tissue via multiple
stains, to physiology, where multiple fluorophores could be used to unravel complex signalling
cascades. The paper begins with an outline of the theory behind our method followed by its
validation using simulated data. The method isal so validated experimentally before conclusions
are drawn and an outlook is given.

2. Theory

2.1. The fractional intensity, o

We start with the only assumption that the fluorescent species have different lifetimes with
monoexponential decays. As an example, consider a sample containing just two fluorescent
species. Each pixel of a FLIM image can thus be fitted with a biexponential decay in the form:
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I(p) = a(p)e*t/fl(p) _|_b(p)e*t/1'2(p) (1)
where p isthe pixel index, 1; arethelifetimes, and a and b are the preexponential coefficients.

It is straightforward to determine the fractional contribution o; of each fluorescent species to
the overall fluorescence intensity. For oy we thus obtain:

na(p)
“P)=Za(p) + wb(p) @

It must be noted here, that o:(p), referred to as the ‘fractional intensity’ [10], is a function
of excitation and emission wavelengths (as, in general, the fluorophores have different spectra)
and thus a(p) is not necessarily representative of the molecular fraction, which is wavelength
invariant and represents the quantity we seek to estimate. In Section 2.2 we show that by taking
FLIM images at two or more excitation (or emission) wavelengths, it is possible to produce a
wavel ength-independent estimate for the molecular fraction.

A robust method for determining the fractional intensity is global analysis[11]. In a global
analysisone assumesthat every pixel inaFLIM image may contain contributions from different
lifetime components, but, importantly, the component lifetimes are not themselves a function
of spatia location. Only the proportion of fluorescence belonging to each of the pixel invari-
ant lifetimes (i.e. the fractional intensity) is alowed to vary. This assumption alows o(p) to
be calculated with a higher signal-to-noise ratio (SNR) than available to pixel-by-pixel fitting
methods, because a large number of data points contribute to the determination of the compo-
nent lifetimes [11].

2.2.  Algorithm for unmixing F fluorophores

Consider now the most general case where a sample is labeled with F different fluorescent
species, each having a different lifetime. Every pixel p in this image contains a mixture of
fluorescent species (with excitation spectra that may, but need not, differ from one another).
In this case, the intensity detected in a given pixel p in response to a very short pulse of light
varies according to the lifetimes, number of fluorophores and excitation efficiencies of each
fluorescent speciesin that pixel:

pit) = 3 Bi(ANi(p)el /) ®
i=1

where B; represents the brightness factor (a combination of the Einstein absorption and
spontaneous emission coefficients, excitation laser intensity, spectral overlap of the absorption
and emission spectra with the excitation bandwidth and detection bandwidth respectively, and
other microscope efficiency factors) of fluorophore speciesi; N; represents the number of fluo-
rophores present in pixel p from fluorophore speciesi; 7 is the lifetime of fluorophore species
i and A is the excitation wavelength. Importantly for what follows, one should note that B;
contains the spectral properties of the fluorescent species and is thus a function of wavelength
which may differ between different molecular species.

The time averaged intensity, as would be detected in response to continuous excitation, is
calculated by integrating over al time:

<1(A,p)> = /wisimwi(p)e“/“)dt (4
70 =1
F
= Y Bi()Ni(p)5 (5
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The fractional intensity of each fluorophore species (o) can then be written as:

_ TiBi(A)Ni(p)
- <I(A,p) > ©

o varies with excitation wavelength, because each fluorescent species has a different excita-
tion spectrum. The fractional intensities for a multiply labeled sample can easily be measured
from a global analysis. However, we are not interested in o, which changes with excitation
wavelength, emission window, laser power, etc. but instead seek a more fundamental quantity,
the molecular fraction (f;). The molecular fraction denotes the number of fluorophores belong-
ing to speciesi in a particular pixel divided by the total number of fluorophores. It represents
the ultimate goal of all unmixing algorithms and is defined as follows:

ai(lv p)

Ni(p)
f; =7 7
i(P) TiNi(p) 0

How can one determine fi(p) for each fluorescent species? If the brightness spectra of the
fluorophore species are identical, then fij(p) = o;(p) [12]. Alternatively, if the brightness spec-
tra of the fluorophore species (Bj(1)) were known from a priori measurements, one need only
measure < | (A, p) > at F wavelengths, and then f;(p) could easily be determined from Eq. (5).
This is the approach taken by the traditional linear unmixing method [5]. In linear unmixing,
each pixel contains F unknowns which need to be determined to obtain the molecular fractions
fi(p). It is thus clear that one needs to perform at least A = F measurements, where A is the
number of spectral positions at which each pixel is sampled, to recover the molecular fraction
in each pixel.

Let us now assume, however, that we do not have any a priori knowledge of Bj(4). Itis now
clearly not sufficient to perform A = F spectral measurements to unmix the signal contributions
to each pixel. Additional information isrequired, which, aswe shall show, can be obtained from
lifetime measurements and global analysis. Thelatter yieldstheintensity fractions o; (A, p). Let
us assume then, that we have available data for c;(A, p) and < I(A, p) >, each measured at A
excitation wavelengths for each image consisting of P pixels.

To develop the method by which this unmixing is achieved, it is useful to recast Eq. (6) in
vector form:

o | =N @B ®

wherel isamatrix containing thetotal fluorescenceintensity and o isthefractional intensity
of speciesi. At each pixel, oj and | are determined for A wavelength positions and the resulting
matrices (a4, 1) are P x A insize. Nj isaP x 1 vector, Bj isa A x 1 vector, ‘-’ isthe entrywise
(Hadamard) product and ‘@’ isthe outer product. Eg. (8) contains the essence of the unmixing
algorithm demonstrated in this paper: Because the orthogonal vectors B; and N; define the
intensity matrix @ - 1 in a unique fashion, information on molecular fraction (contained in N;)
and the individual spectra of the fluorophores (contained in B;) can in principle be recovered
from adecomposition of o -1 .

This goal can be reached using Singular Value Decomposition (SVD). To understand how
this is accomplished, recall that SVD can factor any matrix into a product of three matrices
UZVT [13], hence:

o1 =UiZVv/ ©)

where U (P x P) and V (A x A) are orthogonal matrices and X (P x A) is a diagona matrix
containing the r singular values (o) (in descending order) of o; -1, wherer is the matrix rank

#116166 - $15.00 USD  Received 2 Sep 2009; revised 9 Nov 2009; accepted 14 Nov 2009; published 30 Nov 2009
(C) 2009 OSA 7 December 2009/ Vol. 17, No. 25/ OPTICS EXPRESS 22751



(in our case unity). The SVD, furthermore, allows any matrix to be written as the sum of r
separable matrices:

r
il =3 0ijUij @V, (10)
j=1

where u;; and v;; are the jth column vectors of U; and V;, respectively (also called the left
and right singular vectors). Referring to Eq. (8), one can see that u; 1 and v; 1 are estimators
(Bi =U, Ni =v;) for N and B; respectively.

There is, however, the problem of how to divide o 1 between the two singular vectors. This
is not specified, and thus there exists an unresolved proportionality constant between the esti-
mators and the physical values (i.e., niN; = N; and m;B; = B; where njm; = G 1).

Thus the molecular fraction estimator, fi(p):

fi = ~ 11
(P > Ni(p) )
isrelated to the true physical vaue fi(p) by
if
fi(p) = L) (12

fi(p)(ci—1)+1

where ¢; is a correction factor based on either the ratio ¢; = nj/(Xjni — nj) or ¢ =
oim 1/(Zioim 1 — oim1). Thusif the true molecular fraction isknown at any one pixel inthe
image, or if the ratio of the brightness spectra is known at one wavelength, then the estimated
molecular fraction can be corrected to yield true molecular fractions.

The algorithm hinges on the orthogonality between B; and N;. Thisis only the case when
the brightness of a given fluorophore species changes with wavelength (not pixel number) and
the number of fluorophores of a given species changes only with pixel number (and not wave-
length). In reality, of course, there will be variability in the spectral properties with pixel loca-
tion as a result of molecular interactions of the fluorophores with their environment. We take
thisinto account by allowing some fluctuationsin lifetime and spectral properties for each flu-
orophore from pixel to pixel and the algorithm is robust enough to deal with such abberations.
However, the method is no longer valid for cases where the fluorophores are subject to very
large property changes (such as may be caused by FRET).

3. Simulations

In order to demonstrate the unmixing algorithm described in Section 2 and to explore its limi-
tations we have constructed a model to simulate experimental data for various signal-to-noise
ratios (SNR), fluorophore excitation and lifetime properties.

The simulated datasets, shown in Fig. 1, mimic data acquired by confocal microscopy with
TCSPC hardware and a wavelength flexible excitation source.

We show that the algorithm is capable of unmixing the fluorophoresin the simulated sample,
and then continue to further characterize the robustness of the algorithm for faintly emitting
samples with highly overlapping spectra and/or lifetimes.

3.1. Generation of test data

Two-dimensional patterns were generated as test sets with each pixel containing spectral and
lifetime information. We assume that every spatial pixel in the simulated image contains mul-
tiple fluorophores, drawn from two separate fluorophore species. Each of the two species was
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assigned its own (monoexponentia) lifetime and associated brightness spectrum B(A). B(4)
was assumed to be a Gaussian (although the shape of the assumed spectrum is immaterial),
with peak excitation wavelength A, and bandwidth A1 for species 1 (and likewise for species
2):

2
B1(A) = exp {W} (13)

In order to simulate the variability of real fluorophores, each fluorophore from agiven species
ismodeled as having adlightly different peak excitation wavelength and bandwidth, drawn from
aGaussian distribution with mean A ,; and standard deviation A, for species 1. These concepts
are exemplified by the simulated excitation spectra shown in Fig. 1(d).

The fluorescence decays were furthermore simulated assuming that the lifetimes of fluores-
cent species 1 and 2 were distributed around 2 ns and 1 ns as shown in Fig. 1(e) (smilar to
lifetime differences found in fluorophores of biological interest, see Section 5. For atwo com-
ponent system, the instantaneous intensity at each pixel p and wavelength A can be written as
follows (see section 2):

=}
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Fig. 1. Simulated dataset. Distribution of fluorophore species 1 (A) and 2 (B). (C) Molec-
ular Fraction of species 1. (D) Distribution of excitation spectra. The excitation spectra for
fluorescent species 1 and 2 are shown in blue and red, respectively. Each fluorophore is
modeled as having a slightly different excitation spectrum, hence there are thousands of
individual spectra plotted and overlaid. (E) Distribution of fluorophore lifetimesin a given
pixel. This histogram displays the distribution of lifetimes assigned to each fluorescent
species in a given pixel. Fluorescent species 1 and 2 are modelled as having a mean life-
time of 2 nsand 1 ns, respectively. (F) Exponential decay curve with Poisson noise from
pixel denoted by white square in (C) at 510 nm excitation wavelength. (G) Intensity images
at each excitation wavelength.
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I(2,p.t) = B1(A)N1(p)e /™) + B(2)No(p)el /™) (14)

Equations (13) and (14) were used to create a4 dimensional (x,y,t, A1) dataset with in-house
developed software, written in Matlab (Mathworks, Inc.). The impulse response of the TCSPC
system ismodeled by a 300 ps FWHM Gaussian, close to the value measured for our hardware.
Poisson noise is then added to the dataset to model photon noise (See Fig. 1(f)). We assumed
mean signal levels of around 800 photons per pixel (see Fig. 1(g)), mimicking a typical signal
measurement. Intensity images were obtained by integrating the time resolved signals in each
pixel for each excitation wavelength.

3.2. Global analysis of lifetime data

The purpose of the simulated datasets is to assess the capability of our algorithm to retrieve the
original fluorophore distributions in the phantom images in the presence of noise from various
sources. For this we assume that we do not know anything about the fluorophores spectral,
lifetime, and concentration distributions across the image field. The only assumption we make
is that the mean lifetimes (t1) and (t2) for fluorophores 1 and 2 are measurably different. For
atwo component mixture the global analysis method is a particularly powerful and simple way
to recover (11) and (12) and the fractional intensities as defined in Section 2.1 [14]. We start
the global analysis by calculating A and B parameters from the simulated decay data according
to[11]:

¥, 1(t)sin(ot)

AX,p) = T(t) (15)
B p) = HIOTEC as)

The AB parameters are then plotted on a phasor diagram (AB plot) for each excitation wave-
length and pixel (see Fig. 2) [15][16]. From this, we extract two global lifetime estimates, 7,
and 7, from which, in turn we are now able to calculate fractional intensities ¢4 (2, p) [11]
using the following relations (see Fig. 2(c)):

0o T (1—o0q)wot2

A = 17

(02,72,72) 1+ (wpm1)2 + 1+ (wpT2)2 (n
o (1— O(1)

1+ (wm)? 14 (woT2)?

Section 2 outlined how SVD is used to convert the estimated fractional intensities into esti-
mated molecular fractions.

The results are shown in Fig. 3. Clearly, the spatial distribution of fluorophores 1 and 2 are
recovered from the data and the estimated molecular concentrations N1 and N (Fig. 3(b)) show
asimilar distributionto the original (Fig. 3(a)). Likewise, the shape of the estimated fluorophore
spectra, B, and B, bear aclose resemblance to the true spectra (Fig. 3(c): normalised estimated
spectra shown in green and yellow, original spectra shown in red and blue). As discussed in
section 2 the estimators represent molecular concentration and spectra, subject to the constraint
nimi = Gj 1.

If the true molecular fraction is known in one pixel (e.g. through a calibration experiment or
knowledge of expected fluorophore distributions at a certain point in the sample) then Nj can be
corrected to yield true molecular fractions. The results of such a correction are shown in Fig. 4.

B(ou, 71, 72)

(18)
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(A)
0.5

A=-1.15"B +1.31

(C)

Fig. 2. (A) AB plot showing simulated dataset. AB clouds of different colour represent data
obtained at different excitation wavelengths. Cloud centroids are indicated by yellow dots.
(B) Graphical globa analysis showing linear fit to signals from al pixels and excitation
wavelengths. The global lifetimes are described by the intersection of the linear fit with the
red monoexponential circle. (C) Fractiona intensity images calculated using Eq. (9) and
global lifetime estimates.

Figure 4(a) shows the original molecular fraction across the image. The estimated, uncorrected
molecular fraction f(p) is shown in Fig. 4(b) and is calculated using Eq. (11). The corrected
fraction feorrected (p) isshown in Fig. 4(c) and the mean squared difference error between true
molecular fraction and estimated corrected molecular fraction is shown in Fig. 4(d). There is
no spatial structure discerniblein Fig. 4(d) proving that a single proportionality factor accounts
for the difference between the original and estimated molecular fraction and no spatial biasis
evident.

3.3.  Figure of merit calculations

Only two excitation wavelengths are required to unmix two fluorophore species. Excitation at
additional wavelength positions simply increases the SNR.

A Figure-of-Merit (FOM) was devised to characterize the fidelity of the unmixing algorithm.
Inanideal situation, the estimator for N; differsfrom thetrue distribution N; by afactor n; which
is constant across the entire image. Deviations from this are either caused by photon noise, or
because the unmixing algorithm is ineffective in separating the fluorophore distributions. We
define the FoM as the coefficient of variation of nj compared to the shot noise limit (where Ny
is the number of photons collected) [17]:

stdev(n;)
FoM=) ———~/N 19
Zi“ mean(n;) V" (19
Figure 5 shows the FoM as a function of both spectral separation (from 1 nm to 40 nm)
and lifetime separation (from 0.2 nsto 1.1 ns). The lower left hand corner of the FoM plot
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Fig. 3. (A) Origina (noise free) fluorophore distributions and (B) estimates derived from
SVD. (C) Retrieved fluorophore excitation spectrafor fluorescent species 1 and 2, in yellow
and green, respectively (peak normalized and plotted against true spectra)
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Fig. 4. Molecular fraction for simulated dataset. (A) Noise free molecular fraction. (B)
Molecular fraction estimated by SVD unmixing agorithm. (C) Estimated molecular frac-
tion corrected using molecular fraction known at one pixel. (D) Mean squared error be-
tween corrected molecular fraction and true molecular fraction

corresponds to fluorophores with small spectral and lifetime separations. In this situation the
fluorophores are difficult to unmix and the FOM is correspondingly large. At the other extreme,
in the upper right hand corner, spectra and lifetimes are well separated, and unmixing is cor-
respondingly easier. This is reflected by a FOM close to one, the theoretical limit. The insets
show simulations corresponding to the FOMs at these two extremes: In the top right panel, the
estimated distributions of the two fluorophores are shown (left hand column). The middle col-
umn shows the distribution of n; across the image and the right hand column the spectral and
lifetime separations of the fluorophore species. There islittle spatial bias evident in n;, and the
fluorophores and the channels are easily separated by the method. In contrast, the lower inset
shows datawith the highest represented FoM value. This situation corresponds to spectrawhich
are completely overlapping for the two fluorophores and a lifetime separation of only 200 ps.
The images show that thereis significant crosstalk and the two fluorophore channels are poorly
unmixed. The FOM plot shows that even at complete spectral overlap, a good degree of unmix-
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ing can be obtained for lifetime separations exceeding around 1 ns. Likewise, at low lifetime
separations, good FoM's can be obtained when the spectral separationis large.
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Fig. 5. Figure-of-Merit (FoM) for unmixing algorithm at arange of spectral - lifetime sep-
arations. The lifetime of Fluorophore 1 is held at 2 ns and peak excitation at 500 nm. The
lifetime of Fluorophore 2 isthen varied from 1.2 nsto 2.2 ns and the spectral peak isvaried
from 500 nm to 540 nm. The insets show the estimators for the unmixed images (N3 and
N,), ratios to the true images (n1 and n,) and the associated excitation spectraand lifetime
distributions. See text for details.

4. Materialsand methods
4.1. Instrumentation

A commercial white light supercontinuum source (SC450, Fianium Inc.) was used for exci-
tation. The source features a repetition rate of approximately 40 MHz with pulse widths on
the order of tens of picoseconds. An acousto optic tunable filter, AOTF (AA Optoelectron-
ique AOTFnc-vis, France), was used to select the excitation wavelengths, with a bandwidth of
approximately 1 nm. The supercontinuum source is part of a custom-built confocal scanning
microscope, details of which are givenin [1].

4.2. Biological sample preparation

Human neuroblastoma (SH-SY5Y) cells were grown in Minimal Essential Medium plus 15%
foetal calf serum, 1% Non Essential Amino Acids, 2mM N-glutamine and 1% Penicillin-
Streptomycin (Sigma, UK). 1 x 10° cells were plated onto Matek cell culture dishes and cul-
tured at 37°C and 5% CO,. After 24 h, the cells were washed 3x with ice-cold phosphate
buffered saline (PBS; pH 7.4) before fixing them with ice-cold 4% paraformaldehyde in 0.1
M phosphate buffer (pH 7.4) for 10 min at room temperature (RT). After fixation, the cells
were washed 3x with PBS before incubating them with either 5% normal goat serum (NGS) or
5% normal donkey serum (NDS) and 0.25% Triton X-100 in PBS for 1h at RT. Thereafter the
cellswere incubated with either anti-human laminin IgG (1:1000) (Abcam, Cambridge,UK), or
anti-human Map2 1gG (1:500) (Chemicon, CA, USA) with 5% NGS or NDS, respectively, and
0.25% Triton X-100 in PBS overnight at RT. The cellswere rinsed 3x with PBS and incubated
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with secondary goat anti rabbit antibody labeled with Alexa546 (1:200) and donkey anti mouse
antibody labeled with Alexa 555 (1:100; both Invitrogen, UK), 2% NGS or NDS respectively,
0.25% Triton X-100 in PBSfor 1hin the dark at RT. Thereafter the cells were rinsed again 3x
with PBS before imaging.

4.3. Image acquisition

All data presented in this paper were acquired using a 60x objective (NA=1.20, Olympus Inc.).
FLIM images were taken at eight excitation wavelengths: 500 nm, 520 nm, 540 nm, 550 nm,
555 nm, 560 nm, 565 nm, and 570 nm using the supercontinuum source described above. Flu-
orescence emission at each excitation wavelength was collected through a longpass filter, with
a 590 nm cutoff. Lifetimes were resolved using a TCSPC system (SPC-830 Becker and Hickl,
Germany). Each FLIM image took 60 s to acquire, during which time the photon count rate
was kept well below 1% of the laser repetition rate to prevent pulse pile-up. Photobleaching
was negligible. All TCSPC images were binned into 2 x 2 pixels and subsequently processed
using Matlab software (all software is available upon request to the authors).

5. Experimental results

Figure 6 shows the lifetime-excitation dataset from our biological sample on an AB plot. The
AB cloud is distributed between two lifetimes, which are extracted via graphical analysis (see
Section 3.2). Fluorophore 1 is estimated to have a longer lifetime (2.94 ns) compared to Flu-
orophore 2 (1.20 ns). Combining these lifetimes with the intensity images at each wavelength
(Fig. 6), we can calculate o« images that are then unmixed using SVD to extract the contribu-
tions of the two fluorophores.

Theresults of the SVD unmixing are shown in Fig. 7. Asseenin Fig. 7(a), the extracted spec-
tra compare well to literature values for Alexa 546 and 555, especially considering the highly
overlapping nature of these excitation spectra. The spectra have been corrected for changes
in the supercontinuum laser power at each wavelength and excitation-emission efficiencies of
the microscope as detailed in [1]. From the spectra, we can deduce that Fluorophore 1 is the
estimator for Alexa 546 dye distribution, which is further confirmed by its longer lifetime.

A=-0.75"B + 0.96

0.5

500 nm 520 nm 540 nm 550 nm

1000

0.25

Fig. 6. AB plot showing biological sample FLIM images taken at several excitation wave-
lengths (mean of each AB cloud is shown by ayellow dot) and (B) Intensity images at each
excitation wavelength. Images are approximately 150 um x 150 um

Figure 7(b) shows N1, the estimator for the distribution of Fluorophore 1. As expected from
the behaviour of the laminin IgG antibody (to which the Alexa 546 dye is conjugated), the
largest signal contributions originate from the nucleus and nuclear envelope of the cells. Like-
wise the estimated distribution for Fluorophore 2 is mostly confined to the cytoplasm, whichis
also expected as Fluorophore 2's antibody (Map 2 1gG, to which the Alexa 555 dye is conju-
gated) targets the cytoplasm. These distributions can be combined to form the estimated molec-
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ular fraction, shown in Fig. 7(d). As expected, the estimated molecular fraction shows a high
proportion of Fluorophore 1 (Alexa 546) in the nuclear region, and alow proportion in the cy-
toplasmic region. This image has not been calibrated and is thus not a true molecular fraction,
but related to the true fraction via a constant factor. The estimated molecular fraction - intensity
overlay shown in Fig. 7 (€) shows the nuclear localization of Fluorophore 1.

A ! e Fluorophore 1

o8l ® Fluorophore 2
— Alexa 555
— Alexa 546

Amplitude (A.U.)

280 500 520 540 560 580 600

Excitation Wavelength (nm) 01

Intensity

Fig. 7. (A) Estimated fluorophore excitation spectra and literature values for Alexa 546
and 555 dyes (peak normalized). (B) Estimated distribution of Fluorophore 1 (N1) and (C)
Fluorophore 2 (Ny). (D) Estimated molecular fraction fl and (E) intensity image overlaid
with estimated molecular fraction. All images are approximately 150 um x 150 um

6. Conclusion

In conclusion, we have developed an unmixing algorithm that takes advantage of two aspects
of fluorescence emission to unmix doubly labeled samples. A summary of the method consists
of the following steps:

1. A wavelength-resolved lifetime image dataset is acquired using at least 2 wavelength po-
sitions for a two fluorophore sample. Wavelength resolution can be either excitation or
emission resolved; here we measure at different excitation wavelengths with the advan-
tage that signal can be collected over the entire emission bandwidth.

2. The obtained datasets are represented on AB plots and a graphical globa analysis is
performed to extract the lifetimes and fractional intensitiesin each pixel.

3. SVD isused to perform a quantitative unmixing of the the two fluorophore channelsin
each image.

There are several advantages to our method. It is computationally very efficient, requires no
initial guesses, and does not require minimisation. Associated computation speed is compatible
with the FLIM image acquisition rates. The method is applicable to both widefield and confocal
FLIM techniques and works independently of whether the data are collected using wavelength
resolved excitation or wavelength resolved emission imaging. Here we report on the use of ex-
citation resolved FLIM, which has the great advantage that fluorescence can be detected over
the entire emission bandwidth, using long passfilters. We show that fluorophores can be quanti-
tatively unmixed even if no a priori information of spectraand lifetimes of the fluorophores are
available. The only constraint is that the fluorophores lifetimes be discernible from one another
so that aglobal analysis can be performed. Although we have presented the method for samples
containing two fluorophores, it can be adapted for the unmixing of samples containing three or
more fluorophores. The multidimensional datasets one needs to acquire in such situations are
very large, containing information in multiple spatial, temporal and spectral dimensions. The
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technology to perform multidimensional microscopy is already widely available [18] [19] [20]
[21]. The opportunities this generates are great, e.g. for the study of multiplexed pathways, to
provide contrast between healthy and diseased tissue [22], for the analysis of multicomponent
fluidic assays[23] [24] and for the study of functional aspects at the molecular scale [25], [26].
Speedy and accurate algorithms are needed for the intelligent reduction and representation of
multidimensional datasetsif these applications are to be realized.
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