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Methods). The results in Fig. S4 show that there is no random
colocalization between seed fibrils and monomeric protein. On
the contrary, there is a clear positive correlation between seeds
and addition of monomer, suggesting that seed fibrils grow by
elongation reactions.

Furthermore, we found that neither of the primary Abs used
displayed significant cross-reactivity with the labeled AS added
exogenously. We compared the length of heterofibrils formed in
cells with the length of the initial AF568-labeled seed fibrils
measured in vitro by staining the latter with the same primary
and secondary Abs as used in cells (Fig. S5). The average length
of the heterofibrils in cells was significantly greater than the av-
erage length of the initial seed fibrils. Overall, these data suggest
that, in neurons, the rate of monomer addition to a preformed seed
fibril is significantly faster than the rate of spontaneous nucleation,
for both exogenously added and endogenous monomeric protein.

Monomeric, but Not Fibrillar AS, Added Exogenously to Neurons
Induces Apoptosis After 72 H. Many studies have recently shown
that smaller, oligomeric species of AS, rather than mature fibrils,
induce toxicity (12, 13, 22–24). Here, we addressed directly
whether or not seed fibrils that are capable of seeding endogenous
AS can induce toxicity in neuronal cells, as some reports have
suggested (8, 25, 26). Using an apoptosis detection assay (Fig. 4D
and Figs. S6 and S7) we show that adding unlabeled seed fibrils
(either 50 nM or 500 nM) to neurons does not lead to significantly
increased cell death within 72 h of incubation in AS-free medium
in comparison to untreated control neurons. In contrast, we find
that the addition of unlabeled monomeric AS (500 nM) leads to
significantly increased levels of apoptosis in VM cells under sim-
ilar experimental conditions (Fig. 4D and Figs. S6 and S7), con-
firming reports that correlate increased levels of AS with disease
pathology (27, 28).

Exogenously Added Monomeric AS Triggers the Nucleation of
Endogenous AS. To test whether or not exogenous monomeric
AS induces toxicity via coaggregation with endogenous AS, we
added monomeric AF647-labeled AS (500 nM, 10% covalently
labeled with AF647, red) to VM cells in the absence of seed
fibrils. Using the same protocol as described above for the de-
tection of heterofibrils in VM and SH-SY5Y cells, we observed
that aggregates of endogenous AS were formed throughout the
cell, even in areas that were not in close proximity to in-
corporated exogenous protein. Moreover, dSTORM imaging
revealed that the mean area of endogenous AS particles (stained
with a primary Ab and a secondary Ab conjugated with AF568,
green) formed in the presence of exogenously added monomer
was significantly higher than the mean area of endogenous AS
species present in control cells that had not been treated with
exogenous AS monomers (Fig. 4C). It thus appears that the
endocytosed exogenous monomer triggers the aggregation of
endogenous AS (Fig. 4 A, iii ) without the two moieties neces-
sarily coming into direct contact. Similar results were obtained
for SH-SY5Y cells (Fig. S8). However, as we have previously
shown in Fig. 2, exogenously added monomeric AS self-nucleates
and forms small aggregates inside the cells. It therefore remains
to be determined whether or not the exogenously added mono-
meric protein, upon formation of small aggregates, can indirectly
trigger endogenous AS nucleation via other mechanisms, such as
cell stress or the production of oxidative species, or through a
general loss of protein homeostasis. Overall, these findings there-
fore link the aggregation of endogenous AS induced indirectly by
exogenous monomer with an increased toxicity.

Endocytosed Monomeric AS Has a Reduced Propensity to Seed
Endogenous Compared with Preformed AS Fibrils. Having estab-
lished that seed fibrils can elongate via addition of monomeric
AS, both externally added and endogenous, we investigated the
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Fig. 3. (A, i and ii) Overlaid differential interference contrast and wide-field fluorescence images of VM cells treated for 1 h with AF568-labeled AS seed
fibrils (green), incubated for 24 h in AS-free medium, and immunostained for endogenous AS with a secondary Ab tagged with AF647 (red). (B) Zoomed-in
dSTORM images of heterofibrils formed of exogenous seeds (green) elongated by endogenous AS (red, indicated by arrows) in VM cells. The top two images
correspond to fibrils located in the areas indicated by the white arrows in A. (Scale bars: 500 nm.) (C) Zoomed-in dSTORM images of heterofibrils formed of
exogenous seeds (green) elongated by endogenous AS (red, indicated by arrows) in SH-SY5Y cells. (D) Quantification of the extent of seed elongation by
endogenous AS, as indicated by arrows in B and C (Seed elongation), and of the size of aggregates consisting of endogenous AS only, as indicated by ar-
rowheads in B (Nucleation). The statistical analysis was performed using an unpaired t test (***P < 0.001). The experiment was repeated eight times in SH-SY5Y cells
and seven times in primary VM cell cultures, and for each experiment, at least eight randomly chosen areas on the glass coverslip were imaged.
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excess monomeric protein pool. Taken together, our data suggest
that the level of soluble AS is crucial to the development of AS
pathology and that the relative concentrations of the different forms
of AS are likely to play a key role in the spreading of disease.

Materials and Methods
WT human AS was recombinantly expressed and purified as described pre-
viously (19). Superresolution imaging in vitro and in cells was performed
using a dSTORM microscopy setup based on a Nikon Eclipse TE 300 inverted
wide-field microscope and a 100×, 1.49-N.A. total internal reflection
fluorescence objective lens (Nikon, UK Ltd) as described by Pinotsi et al.
(18). The experiments were performed on both neuroblastoma cell

cultures and on VM neurons dissected from rat embryos. Details on all of the
experimental protocols, methods, and data analysis can be found in SI Ma-
terials and Methods.
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