skip to primary navigationskip to content
 

De novo design of a biologically active amyloid

Gallardo R, Ramakers M, De Smet F, Claes F, Khodaparast L, Khodaparast L, Couceiro JR, Langenberg T, Siemons M, Nyström S, Young LJ, Laine RF, Young L, Radaelli E, Benilova I, Kumar M, Staes A, Desager M, Beerens M, Vandervoort P, Luttun A, Gevaert K, Bormans G, Dewerchin M, Van Eldere J, Carmeliet P, Vande Velde G, Verfaillie C, Kaminski CF, De Strooper B, Hammarström P, Nilsson KPR, Serpell L, Schymkowitz J, Rousseau F "De novo design of a biologically active amyloid"Science. (2016), 354, aah4949.

DOI: 10.1126/science.aah4949 | pdf


Abstract

Most human proteins possess amyloidogenic segments, but only about 30 are associated with amyloid-associated pathologies, and it remains unclear what determines amyloid toxicity. We designed vascin, a synthetic amyloid peptide, based on an amyloidogenic fragment of vascular endothelial growth factor receptor 2 (VEGFR2), a protein that is not associated to amyloidosis. Vascin recapitulates key biophysical and biochemical characteristics of natural amyloids, penetrates cells, and seeds the aggregation of VEGFR2 through direct interaction. We found that amyloid toxicity is observed only in cells that both express VEGFR2 and are dependent on VEGFR2 activity for survival. Thus, amyloid toxicity here appears to be both protein-specific and conditional—determined by VEGFR2 loss of function in a biological context in which target protein function is essential.